K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2016

A B C D I K E F

a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD : 

\(AE.AB=AF.AC=AD^2\)

b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html

c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)

1: Xét tứ giác BHEK có \(\widehat{BHE}+\widehat{BKE}=180^0\)

nên BHEK là tứ giác nội tiếp

2: Xét ΔBEA vuông tại E có EH là đường cao

nên \(BH\cdot BA=BE^2\left(1\right)\)

Xét ΔBEC vuông tại E có EK là đường cao

nên \(BK\cdot BC=BE^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BA=BK\cdot BC\)