K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2019

A B C M H K E F 1 2 I

a) * Vì tam giác ABC cân tại A nên đường cao đồng thời là đường trung tuyến  ( t/c ) 

=> AM là đường trung tuyến ứng với cạnh BC 

=> M là trung điểm của BC   => MB = MC = 1/2 BC

b)-Vì tam giác ABC cân nên góc B = góc C 

Vì MH vuông góc AB, MJ vuông góc AC nên \(\widehat{MHB}=90^o;\widehat{MKC}=90^o\)

Xét tam giác MHB và tam giác MKC có : 

góc MHB = góc MKC ( =90 độ ) 

MB = MC ( cm ở câu a ) 

góc B = góc C (cmt ) 

Suy ra : \(\Delta MHB=\Delta MKC\) ( cạnh huyền - góc nhọn )

=> MH = MK ( cặp cạnh tương ứng ) 

* Gọi I là giao điểm của AM và HK 

Vì tam giác MHB = tam giác MKC ( cmt ) 

=> BH = CK ( cặp canh t/ư) 

Mà AB = AC ( tam giác ABC cân tại A )

=> AB - BH = AC - CK 

=> AH = AK 

=> Tam giác AHK cân tại A ( d/h ) 

Vì tam giác ABC cân tại A nên đường cao đồng thời là đường phân giác 

=> AM là tia phân giác của góc BAC 

Hay AI là tia phân giác của góc BAC 

- Vì tam giác AHK cân nên phân giác đồng thời là đường cao, đường trung tuyến  (t/c) 

=> AI là đường cao đồng thời là trung tuyến của tam giác AHK 

=> AM vuông góc HK tại I  và I là trung điểm của HK 

=> AM là đường trung trực của HK ( d/h ) 

c ) * Vì MH vuông góc AB tại H, E thuộc MH nên AM vuông góc AB tại H

Mà H là trung điểm EM 

=> AB là đường trung trực EM 

=> AE = AM ( t/c ) 

Tương tự : AC là đường trung trực của MF 

=> AF = AM  (t/c) 

Suy ra : AE = AF ( = AM )

=> Tam giác AEF cân tại A ( d/h ) 

15 tháng 8 2019

Câu d ) Bạn gọi O là giao điểm của EF với AM 

C/m : tam giác AEO = tam giá AFO 

=> EO = OF

Tiếp tục sử dụng tính chất đặc biệt của tam giác cân như mấy câu trên là ra !!

P/s: Mk k giỏi Hình như giải dài dòng, bn thông cảm nhé

6 tháng 4 2022

ko nhìn thấy 

6 tháng 4 2022

là sao ?

 

1 tháng 5 2022

Gọi D,F lần lượt là trung điểm của AB,AC chứng minh tam giác DFH cân

 

13 tháng 3 2019

Trong ΔAMB, ta có:

MA + MB > AB (bất đẳng thức tam giác) (1)

Trong ΔAMC, ta có:

MA + MC > AC (bất đẳng thức tam giác) (2)

Trong ΔBMC, ta có:

MB + MC > BC (bất đẳng thức tam giác) (3)

Cộng từng vế (1), (2) và (3), ta có:

MA + MB + MA + MC + MB + MC > AB + AC + BC

⇔ 2(MA + MB + MC) > AB + AC + BC

Vậy MA + MB + MC > (AB + AC + BC) / 2 

20 tháng 7 2017

A M B C Hình 45 (h.45) Xét \(\Delta ABM:\)MA+MB>AB (1)

Xét \(\Delta AMC:\) MA+MC>AC (2)

Xét \(\Delta BMC:\) MB+MC>BC (3)

Cộng từng vế (1), (2), (3):

2(MA+MB+MC)>\(\text{AB+AC+BC}\)

Suy ra :

MA+MB+MC>\(\dfrac{\text{AB+AC+BC}}{2}\)

30 tháng 6 2016

bn tự vẽ hình nhẽ mình chỉ cm thôi

30 tháng 6 2016

bài 1: xét Δ EAM vàΔ BCM có:

EM = AM (gt)

BM=AM (gt)

góc EMA = CMB ( đđ) => Δ EAM=Δ BCM (cgc) =>AE =BC( 2 cạnh tương ứng)  (1)

CM tương tự ta đc Δ ANE = Δ CNB (cgc) => BC=FA ( 2 cạnh Tương Ứng)       (2)

 Từ 1 và 2 suy ra AE=FA hay A là trung điểm của EF