K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 12 2022

a) \(IK\) là đường trung bình của tam giác \(ABC\) nên \(IK=\dfrac{BC}{2}=6\left(cm\right)\).

b) \(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.5.12=30\left(cm^2\right)\)

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AM=EF

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

=>AH=4,8cm

c: Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HF là đường trung tuyến

nên HF=AC/2=AF

mà AF=ME

nên HF=ME

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC

Do đó: FE là đường trung bình

=>FE//BC

Xét tứ giác EHMF có

MH//FE

Do đó: EHMF là hình thang

mà EM=HF

nên EHMF là hình thang cân

a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

b: BC=căn 6^2+8^2=10cm 

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm

c: AM=BC/2=5cm

=>HM=1,4cm 

S HAM=1/2*1,4*4,8=3,36cm2

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân