K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2020

Dễ có MN, NK, KM là các đường trung bình của tam giác ABC nên MN = 1/2BC; NK = 1/2AB; MK = 1/2AC

=> Chu vi tam giác MNK bằng: MN + NK + MK = 1/2(BC + AB + AC) = 1/2.48 = 24 (cm)

Vậy chu vi tam giác MNK bằng 24 cm

20 tháng 3 2018

Xét tam giác PAC,ta có:

{MP=MAOP=OC

=>MP = 1/2 AC

Tam giác PBC và AOB tương tự

=> Tam giác MNP đồng dạng với tam giác ABC

=> Chu vi tam giác MNP = 543/2 cm

20 tháng 3 2018

xem trên mạng

17 tháng 7 2016

A B C M N P I

17 tháng 7 2016

a,xét tam giác ABC có MA=MB                              

                              NA=NC

 Nên MN // BC Hay MI // BP; NI //PC  

Xét tam giác ABP có MI // BP; NA=NB Nên MI sẽ đi qua trung điểm AP hay AI=IP(T/C đường trung bình của tam giác)

b, ta có IM là đường trung bình của tam giác  ABP (theo CM trên )

\(\Rightarrow MI=\frac{1}{2}BP\)(1)

ta có IN là đường trung bình của tam giác APC (vì AN=AC; IN//PC)

\(\Rightarrow IN=\frac{1}{2}BC\) (2)

Mà BP=PC ( do p là trung điểm của BC)

từ (1);(2);(3) suy ra MI=IN

c, ta có PABC=AB+BC+AC=54 (cm)      (P là chu vi bạn nhé)

ta có NP =\(\frac{1}{2}AB\)do NA=NC;PC=PB nên NP là đường trung bình của tam giác ABC

tương tự ta có \(MN=\frac{1}{2}BC\)và \(MP=\frac{1}{2}AC\)

mặt khác PMNP=MN+NP+MP=\(\frac{1}{2}BC+\frac{1}{2}AB+\frac{1}{2}AC\)=\(\frac{1}{2}\left(BC+AB+AC\right)\)=\(\frac{1}{2}.54=27\)

Vậy chu vi tam giác  MNP là 27cm

29 tháng 12 2021

\(C_{MNP}=25cm\)

25 tháng 9 2018

tam giác ABCD???

25 tháng 9 2018

Mike ghi nhầm

Xét ΔABC có

D là trung điểm của AB

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: \(DF=\dfrac{BC}{2}\)

Xét ΔABC có

D là trung điểm của AB

E là trung điểm của BC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: \(DE=\dfrac{AC}{2}\)

Xét ΔACB có

F là trung điểm của AC
E là trung điểm của BC

Do đó: FE là đường trung bình của ΔACB

Suy ra: \(FE=\dfrac{AB}{2}\)

Ta có: \(C_{DEF}=DF+DE+EF\)

\(=\dfrac{AB+AC+BC}{2}\)

\(=\dfrac{C_{ABC}}{2}\)