K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

D A B C M N E P Q

a) Do M, N là trung điểm của AB và AC nên MN là đường trung bình tam giác ABC.

Suy ra MN//BC, hay ta có: \(\widehat{MDB}=\widehat{DBP}\)  (Hai góc so le trong)

Mà \(\widehat{MBD}=\widehat{DBP}\)  (Do BD là phân giác)

\(\Rightarrow\widehat{MDB}=\widehat{MBD}\). Vậy tam giác MBD cân tại M hau MB = MD.

Xét tam giác ADB có MD là trung tuyến mà bằng một nửa cạnh tương ứng nên tam giác ADB vuông tại D.

Vậy \(BD\perp AP\)

Hoàn toàn tương tự \(BE\perp AQ\)

b) Xét tam giác ABP có M là trung điểm AB, MD // BP  nên MD là đường trung bình tam giác ABP.

Vậy nên BP = 2MD . Tương tự BQ = 2EM

Mà EM = MD ( = MB)

Vậy nên BP = BQ hay B là trung điểm QP.

c)  Do BE, BD là các tia phân giác trong và ngoài của một đỉnh trong tam giác nên EB vuông góc BD

Vậy tứ giác EADB có 3 góc vuông, suy ra EADB là hình chữ nhật.

\(\Rightarrow AB=ED\)

19 tháng 1 2018

cô huyền ơi làm giúp em bài này với  , : https://olm.vn/hoi-dap/question/1134332.html

19 tháng 1 2018

Câu hỏi của Hồ Anh Tuấn - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo ở link bên trên nhé.

5 tháng 2 2022

-Ủa bài này câu c phải chứng minh trước câu b chứ?

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;