Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là giao điểm của HA và DE
Kẻ DM, EN vuông góc với AH tại M và N
Xét tam giác vuông AEN và tam giác vuông ACH có:
AE=AC ( giả thiết)
\(\widehat{NAE}=\widehat{HCA}\)( cùng phụ góc HAC)
=> Tam giác AEN= Tam giác ACH
=> EN=AH (1)
Tương tự chứng minh được: Tam giác DAM= tam giác ABH
=> AH=DM (2)
Từ (1) và (2)
=> DM =NE (3)
Xét tam giác vuông DMK và tam giác vuông ENK có:
\(\widehat{DKM}=\widehat{EKN}\)
DM=NE ( theo (3))
=> Tam giác DMK=ENK
=> KD=KE
=> K là trung điểm DE
=> AH đi qua trung điểm DE
cô có thẻ giải thích 1 chút về cùng phụ góc HAC được ko ạ ?
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD