Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại là CM: A là trung điểm của KG nhé.
+ Xét \(\Delta ABC\) có:
\(DE\) // \(BC\left(gt\right)\)
=> \(\frac{AD}{DB}=\frac{AE}{EC}\) (định lí Ta - lét) (1).
+ Xét \(\Delta DBC\) có:
\(AK\) // \(BC\left(gt\right)\)
=> \(\frac{AK}{BC}=\frac{AD}{DB}\) (định lí Ta - lét) (2).
+ Xét \(\Delta BEC\) có:
\(AG\) // \(BC\left(gt\right)\)
=> \(\frac{AG}{BC}=\frac{AE}{EC}\) (định lí Ta - lét) (3).
Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}.\)
=> \(AK=AG.\)
=> A là trung điểm của \(KG\left(đpcm\right).\)
Chúc bạn học tốt!
Lời giải:
a) Áp dụng định lý Talet cho:
Tam giác $CFD$ có $AM\parallel FD$:
$\frac{DF}{AM}=\frac{CD}{CM}(1)$
Tam giác $ABM$ có $ED\parallel AM$:
$\frac{ED}{AM}=\frac{BD}{BM}(2)$
Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$
$\Rightarrow DE+DF=2AM$
Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động
b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$
Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:
$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$
Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$
$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$
Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$
$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$