K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi giao của AH với BC là M

=>AH vuông góc BC tại M

góc AFH=góc AEH=90 độ

=>AEHF nội tiếp đường tròn đường kính AH

=>IF=IA=IE=IH

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp đường tròn đường kính BC

=>KF=KE=KB=KC

góc IFH+góc KFH

=góc IHF+góc KCH

=góc KCH+90 độ-góc KCH=90 độ

=>FK vuông góc FI

b: FI=AH/2=3cm

FK=BC/2=4cm

=>IK=căn 3^2+4^2=5cm

9 tháng 12 2016

A B C E F H I K 1 3 4

Như hình vẽ => độ dài IK =5cm

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)

Suy ra: AD=AE(Hai cạnh tương ứng)

hay A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AE+EB=AB(E nằm giữa A và B)

AD+DC=AC(D nằm giữa A và C)

mà AE=AD(cmt)

và AB=AC(ΔABC cân tại A)

nên EB=DC

Xét ΔEBH vuông tại E và ΔDCH vuông tại D có

EB=DC(cmt)

\(\widehat{EBH}=\widehat{DCH}\)(ΔABD=ΔACE)

Do đó: ΔEBH=ΔDCH(Cạnh góc vuông-góc nhọn kề)

Suy ra: HE=HD(Hai cạnh tương ứng)

hay H nằm trên đường trung trực của ED(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AH là đường trung trực của ED

hay AH\(\perp\)ED(đpcm)

a: Xét ΔABC có

BE,CF là đừog cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

b: Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>H,I,M thẳng hàng

Xét ΔBIH và ΔCIM có

IB=IC

IH=IM

BH=CM

=>ΔBIH=ΔCIM