Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban tu ve hinh, minh chi giai cau d)
Ta co : AH.HD=CH.HF ( cmt ) ==> HF/AH=HD/HC
Xét tg FHD va tg AHC co :
goc FHD = AHC ( đđ ) va HF/AH = HD/HC ( cmt )
==> tg FHD ~ AHC ( c-g-c )
==> goc FDH = ACH
Xét tg ADC vuong tai D va
tg AEH vuong tai E co :
goc A chung
==> tg ADC ~ AEH ( g-g )
==> AD/AE = AC/AH ==> AD/AC = AE/AH
Xét tg ADE va tg ACH co :
goc A chung va AD/AC = AE/AH ( cmt )
==> tg ADE ~ ACH ( c-g-c )
==> goc ADE = ACH hay goc HDE = ACH
Ta co : goc HDE = ACH ( cmt ) va goc FDH = ACH ( cmt )
==> goc HDE = FDH hay DH la tia p/g goc FDE
Xét tg FDK co : DH la tia p/g goc FDE ( cmt )
==> HF/HK = FD/KD ( t/c tic p/g ) (1)
Ta co : HD la tia p/g goc FDE va HD⊥DC ( AD⊥DC, H ∈ AD )
==> DC la tia p/g ngoai goc FDE
Xét tg FDE co : DC
tiep tuc :
Xét tg FDE co : DC la tia p/g ngoai goc FDE
==> CF/CK = FD/DK ( t/c tia p/g ) (2)
Tu (1) va (2) ==> HF/HK = CF/CK ==> HF.CK = HK.CF
a: Xet ΔBFC và ΔBDA có
góc BFC=góc BDA
góc FBC chung
=>ΔBFC đồng dạng với ΔBDA
=>BF/BD=FC/AD=BC/BA
=>FC*AB=BC*AD
b: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF*HC=HB*HE
a. ta có \(\hept{\begin{cases}\widehat{ADB}=\widehat{CFB}=90^0\\\widehat{ABD}=\widehat{CBF}\end{cases}\Rightarrow\Delta ABD~\Delta CBF\left(g.g\right)}\)
b.Ta có \(\hept{\begin{cases}\widehat{AFH}=\widehat{CDH}=90^0\\\widehat{AHF}=\widehat{CHD}\text{ (đối đỉnh)}\end{cases}\Rightarrow\Delta AHF~\Delta CHD\left(g.g\right)}\)\(\Rightarrow\frac{AH}{HF}=\frac{CH}{HD}\Rightarrow AH.HD=CH.HF\)
c. từ câu a ta có \(\frac{BD}{BF}=\frac{BA}{BC}\Rightarrow\Delta BDF~\Delta BAC\left(c.g.c\right)\)
đúng 6 sai 1