K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

Ta có \(\overrightarrow{IB}=\overrightarrow{BA}\Rightarrow\hept{\begin{cases}I\in AB\\\overrightarrow{AI}=2\overrightarrow{AB}\end{cases}}\). Tương tự \(\hept{\begin{cases}J\in\left[AC\right]\\\overrightarrow{AJ}=\frac{AJ}{AC}\overrightarrow{AC}=\frac{2}{5}\overrightarrow{AC}\end{cases}}\)

Do đó \(\overrightarrow{IJ}=\overrightarrow{AJ}-\overrightarrow{AI}=\frac{2}{5}\overrightarrow{AC}-2\overrightarrow{AB}\)(đpcm).

4 tháng 9 2019

giải giúp t câu này nha : tính vecto IG theo vecto AB và vecto AC  (các b vẽ hình ra hộ t nhé)

13 tháng 11 2021

Khai thác giả thiết:
+ IA =2IB <=> IA = 2( AB -AI) <=> IA = -2AB <=> AI = 2AB
+ 3JA + 2JC =0 <=> 3JA + 2(JA+ AC) =0 <=> JA = ( -2/5)AC <=> AJ = (2/5) AC
Chỉ ra được vị trí các điểm I, J:
+ I đối xứng với A qua B ( tức B là trung điểm AI)
+ J nằm trên đoạn AC sao cho AJ = 2/5 AC
* Ta có:
+ GI = GA + AI = GA + 2AB
+ GJ = GA + AJ = GA + (2/5) AC
Suy ra:
GI - 5 GJ = -4 GA + 2(AB - AC) = -4GA + 2CB = -4GA + 2(GB -GC)
= -2GA +4GB ( chỗ này có áp dụng tính chất trọng tâm: GA +GB + GC =0)
Do B là trung điểm của AI => 2GB = GA +GI
Suy ra:
GI - 5 GJ = -2GA + 2GA + 2 GI
=> GI = - 5 GJ
Đẳng thức này suy ra I, J, G thẳng hàng => IJ đi qua G (đpcm)
 I, J, G thẳng hàng

NV
13 tháng 11 2021

Do I đối xứng A qua B \(\Rightarrow\overrightarrow{AI}=2\overrightarrow{AB}\)

Do G là trọng tâm tam giác \(\Rightarrow\overrightarrow{AG}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{GA}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

a.

\(\overrightarrow{GI}=\overrightarrow{GA}+\overrightarrow{AI}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}+2\overrightarrow{AB}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

b.

\(\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{JC}=\dfrac{2}{3}\overrightarrow{JA}+\dfrac{2}{3}\overrightarrow{AC}\Rightarrow\dfrac{5}{3}\overrightarrow{AJ}=\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AJ}=\dfrac{2}{5}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GJ}=\dfrac{2}{5}\overrightarrow{AC}\Rightarrow\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}+\overrightarrow{GJ}=\dfrac{2}{5}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{GJ}=-\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{15}\overrightarrow{AC}=-\dfrac{1}{5}\left(\dfrac{5}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\right)=-\dfrac{1}{5}\overrightarrow{GI}\)

\(\Rightarrow\) G,I,J thẳng hàng