Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BPQC có
\(\widehat{BPC}=\widehat{BQC}=90^0\)
Do đó: BPQC là tứ giác nội tiếp
Do K đối xứng với D qua trung điểm của BC nên ta có
\(BD=CK,BK=CD\)
Dựng đường kính DF của (I). Theo hình , thì ta được ba điểm A, F , K thẳng hàng
ta có\(\widehat{KDL}=\widehat{DIC}\left(=90^0-\widehat{CID}\right)=>\)tam giác IDC = tam giác DKL (g.g), từ đó suy ra
\(\frac{DF}{DK}=\frac{2ID}{DK}=\frac{2DC}{KL}=\frac{KB}{KN}\)
=> tam giác DFK = tam giác KBN (c.g.c)
zì zậy nên : \(\widehat{KNB}=\widehat{DKF}=90^0-\widehat{NKF}\)
=>\(\widehat{KNB}+\widehat{NKF}=90^0,\)do đó \(AK\perp BN\)