Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét △AMB và △ANC ta có:
AM=AN ( Vì M,N lần lượt là trung điểm của 2 cạnh AB, AC)
\(\widehat{A}\) là góc chung
AB=AC (Vì là hai cạnh bên trong tam giác cân)
\(\Rightarrow\Delta AMB=\Delta ANC\left(c-g-c\right)\)
\(\Rightarrow BM=CN\) (hai cạnh tương ứng)
Xét ΔAMB và ΔANC có
AM=AN
góc A chug
AB=AC
=>ΔAMB=ΔANC
=>BM=CN
Xét ΔABC có
BM,CN lần lượt là các đường trung tuyến
BM cắt CN tại I
=>I là trọng tâm
=>AI là đường trung tuyến của ΔACB
ΔABC cân tại A
mà AI là đường trung tuyến
nên AI vuông góc CB
=>AI là trung trực của BC
tu ve hinh :
xet tamgiac BCN va tamgiac CBM co : BC chung
BM = CN (gt)
goc BMC = goc CNB = 90 do BM va CN la duong cao (gt)
=> tamgiac BCN = tamgiac CBM (ch - cgv)
=> goc ABC = goc ACB (dn)
=> tamigac ABC can tai A (gt)
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó; ΔBNC=ΔCMB
b: Sửa đề: Cm ΔANM cân tại A
Xét ΔANM có AN=AM
nên ΔANM cân tại A
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Mình xin phép sửa đề:
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN
`------`
\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)
\(\text{CM | BM = CN}\)
\(\text{BM là đường trung tuyến}\)
`->`\(\text{MA = MC (1)}\)
\(\text{CN là đường trung tuyến}\)
`->`\(\text{NA = NB (2)}\)
`\Delta ABC` cân tại A
`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
`->`\(\text{NA = NB = MA = MC}\)
Xét `\Delta ABM` và `\Delta ACN`:
\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)
`=> \Delta ABM = \Delta ACN (c-g-c)`
`->`\(\text{BM = CN (2 cạnh tương ứng).}\)
a. Ta xét \(\Delta BCNvà\Delta CMB\)
có BC chung
góc B = góc C ( Hai góc ở đáy của tam giác cân)
BN = CM ( BN=\(\frac{1}{2}AB=\frac{1}{2}AC=CM\)
Suy ra tam giác BCN = tam giác CMB ( C-G-C)
b. Ta có tam giác BCN = tam giác CMB
suy ra góc BCN = góc CBM ( hai góc tương ứng)
tam giác BKC có góc KBC= góc KCB nên tam giác BKC cân tại K
c. Xét \(\Delta BKC\)
có BC< KB + KC ( BĐT tam giác) (1)
mà BK = 2.KM, CK = 2.KN mà BK= CK, KM =KN (2)
từ (1) và (2) suy ra BC < KB +KC =4.KM
Vậy BC < 4.KM
dạ cảm ơn ạ