K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

a, ∆CHE' cân tại C =>  C E ' H ^ = C H E ' ^

DBHF' cân tại B =>  B F ' H ^ = B H F ' ^

Mà =>  C H E ' ^ = B H F ' ^  (đối đỉnh)

=>  C E ' H ^ = B F ' H ^

=> Tứ giác BCE'F'  nội tiếp đường tròn tâm (O)

b, Có  B F C ' ^ = B E ' C ^ = C H E ' ^ = C A B ^

Vậy A, F', E' cùng chắn BC dưới góc bằng nhau

=> 5 điểm B, F', A, E', C cùng thuộc một đường tròn tâm (O)

c, AF' = AE' (=AH) => AO là trung trực của EF => AO ^ E'F'. DHE'F' có EF là đường trung bình => EF//E'F'

=> AO ^ FE

d,  A F H ^ = A E H ^ = 90 0 => AFHE nội tiếp đường tròn đường kính AH. Trong (O): Kẻ đường kính AD, lấy I trung điểm BC

=> OI = 1 2 AH, BC cố định => OI không đổi

=> Độ dài AH không đổi

=> Bán kính đường tròn ngoại tiếp ∆AEF không đổi

7 tháng 3 2022

Cho hỏi là câu b tại sao có cái góc CAB bằng mấy cái kia vậy?

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn nàyb) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hànhc) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABCBài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt...
Đọc tiếp

Bài 1: Cho tam giác ABC nhọn (AB<AC) nội tiếp (O). Gọi AD,BE,CF là 3 đường cao cắt nhau tại H.
a) Cm: B,C,E,F cùng thuộc 1 đường tròn. Xác định tâm M của đường tròn này
b) Gọi AK là đường kính của (O). Cm: BHCK là hình bình hành
c) Gọi I là trung điểm AH. Cm: IE là tiếp tuyến của (M)
d) Cho AH=5cm, DB=4cm, DC=6cm. Tính diện tích tam giác ABC
Bài 2: Cho tam giác ABC nhọn có góc BAC=45 độ. Các đường cao BE,CF cắt nhau tại H. Gọi O là trung điểm BC
a) Cm: tam giác AEF đồng dạng tam giác ABC và EF = AH/ (căn 2)
b) Cm: tam giác OEF vuông cân và diện tích tam giác AEF= diện tích tứ giác BCEF
c) Cm: trong các tam giác vuông có chiều cao ứng với cạnh huyền không đổi, tam giác vuông cân có chu vi nhỏ nhất
Bài 3: Cho (O;R) và (O' ; R') cắt nhau tại A và  (R>R'). Tiếp tuyến chung EF của (O) và (O') cắt tia đối của tia AB tại C (E thuộc (O), F thuộc (O')). Gọi (I) và (J) lần lượt là tâm của 2 đường tròn ngoại tiếp tam giác OEC và tam giác O'FC
a) Cm: (I) cắt (J)
b) Gọi D là giao điểm cùa (I) và (J) (D # C). Cm: A,B,D thẳng hàng
c) Gọi M là điểm đối xứng của E qua OC, N là điểm đối xứng của F qua O'C. Cm" E,F,M,N cùng thuộc 1 đường tròn, xác định tâm đường tròn này
Bài 4: Cho tam giác ABC, vẽ (I;r) tiếp xúc AB,BC,CA lần lượt tại M,N,S.
a) Cm: AB+AC-BC=2M
b) Cho AB=7cm, BC=6cm, AC=4cm. Tính MA,NB,SC
c) Giả sử tam giác ABC vuông tại A, R và r là bán kính của đường tròn ngoại tiếp và nội tiếp của tam giác
Cm: AB+AC=2(R+r)

Các bạn không cần làm hết đâu ạ, câu nào các bạn biết thì các bạn làm dùm mình rồi gửi câu trả lời cho mình nha. Mình cần gấp lắm ạ!!!! Mong các bạn giúp mình

0
10 tháng 8 2017

1.Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEC = 900.

CF là đường cao => CF ┴ AB => góc BFC = 900.

Như vậy E và F cùng nhìn BC dưới một góc 900 => E và F cùng nằm trên đường tròn đường kính BC.

Vậy bốn điểm B,C,E,F cùng nằm trên một đường tròn.

3. Xét hai tam giác AEH và ADC ta có: góc AEH = góc ADC = 900; góc A là góc chung

=> Δ AEH ˜ Δ ADC => AE/AD = AH/AC=> AE.AC = AH.AD.

* Xét hai tam giác BEC và ADC ta có: góc BEC = góc ADC = 900; góc C là góc chung

=> Δ BEC ˜ Δ ADC => AE/AD = BC/AC => AD.BC = BE.AC.

4. Ta có góc C1 = góc A1 (vì cùng phụ với góc ABC)

góc C2 = góc A1 ( vì là hai góc nội tiếp cùng chắn cung BM)

=> góc C1 = góc C2 => CB là tia phân giác của góc HCM; lại có CB ┴ HM => Δ CHM cân tại C

=> CB cũng là đương trung trực của HM vậy H và M đối xứng nhau qua BC.

5. Theo chứng minh trên bốn điểm B, C, E, F cùng nằm trên một đường tròn

=> góc C1 = góc E1 (vì là hai góc nội tiếp cùng chắn cung BF)

Cũng theo chứng minh trên CEHD là tứ giác nội tiếp

góc C1 = góc E2 (vì là hai góc nội tiếp cùng chắn cung HD)

góc E1 = góc E2 => EB là tia phân giác của góc FED.

Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE mà BE và CF cắt nhau tại H do đó H là tâm đường tròn nội tiếp tam giác DEF.

10 tháng 8 2017

1. Xét tứ giác CEHD ta có:

góc CEH = 900 (Vì BE là đường cao)

góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp

2. Theo giả thiết: BE là đường cao => BE ┴ AC => góc BEA = 900.

AD là đường cao => AD ┴ BC => BDA = 900.

Như vậy E và D cùng nhìn AB dưới một góc 900 => E và D cùng nằm trên đường tròn đường kính AB.

Vậy bốn điểm A, E, D, B cùng nằm trên một đường tròn.

3. Theo giả thiết tam giác ABC cân tại A có AD là đường cao nên cũng là đường trung tuyến

=> D là trung điểm của BC. Theo trên ta có góc BEC = 900.

Vậy tam giác BEC vuông tại E có ED là trung tuyến => DE = 1/2 BC.

4. Vì O là tâm đường tròn ngoại tiếp tam giác AHE nên O là trung điểm của AH => OA = OE => tam giác AOE cân tại O => góc E1 = góc A1 (1).

Theo trên DE = 1/2 BC => tam giác DBE cân tại D => góc E3 = góc B1 (2)

Mà góc B1 = góc A1 (vì cùng phụ với góc ACB) => góc E1 = góc E3 => góc E1 + góc E2 = góc E2 + góc E3

Mà góc E1 + góc E2 = góc BEA = 900 => góc E2 + góc E3 = 900 = góc OED => DE ┴ OE tại E.

Vậy DE là tiếp tuyến của đường tròn (O) tại E.

5. Theo giả thiết AH = 6 Cm => OH = OE = 3 cm.; DH = 2 Cm => OD = 5 cm. Áp dụng định lí Pitago cho tam giác OED vuông tại E ta có ED2 = OD2 – OE2 ↔ ED2 = 52 – 32 ↔ ED = 4cm

13 tháng 3 2020

Đáp án:

Giải thích các bước giải:

1. Xét tứ giác CEHD có :

CEH = 90 ( BE là đường cao )

CDH = 90 ( AD là đường cao )

⇒ CEH + CDH = 90 + 90 = 180

Mà CEH và CDH là hai góc đối của tứ giác CEHD

⇒ CEHD là tứ giác nội tiếp (đpcm)

2. BE là đường cao ( gt )

⇒ BE ⊥ AB ⇒ BFC = 90

Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB

⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)

3. Xét ΔAEH và ΔADC có :

AEH = ADC (=90)

A chung

⇒ ΔAEH ~ ΔADC

⇒ AE/AD = AH/AC

⇒ AE.AC = AH.AD

Xét ΔBEC và ΔADC có :

BEC = ADC (=90)

C chung

⇒ ΔBEC ~ ΔADC

⇒ AE/AD = BC/AC

⇒ AD.BC = BE.AC (đpcm)

4. Có : C1 = A1 (cùng phụ góc ABC)

C2 = A1 ( hai góc nối tiếp chắn cung BM )

⇒ C1 = C2 ⇒ CB là tia phân giác HCM

Lại có : CB ⊥ HM

⇒ Δ CHM cân tại C

⇒ CB là đường trung trực của HM

⇒ H và M đối xứng nhau qua BC (đpcm)

5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )

⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)

Có : Tứ giác CEHD nội tiếp (câu 1)

⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)

Từ (*) và (**) ta suy ra :

E1 = E2

⇒ EB là tia phân giác DEF

Cm tương tự ta được : FC là tia phân giác của DFE

Mà BE và CF cắt nhau tại H

⇒ H là tâm của đường tròn nội tiếp ΔDEF

10 tháng 11 2021
17 tháng 5 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng l: Đoạn thẳng [P, C] Đoạn thẳng m: Đoạn thẳng [M, A] Đoạn thẳng n: Đoạn thẳng [B, N] O = (1.97, 2.92) O = (1.97, 2.92) O = (1.97, 2.92) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm P: Giao điểm của c, j Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm M: Giao điểm của c, k Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm N: Giao điểm của c, i Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm F: Giao điểm của j, f Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm E: Giao điểm của i, g Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm D: Giao điểm của k, h Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m Điểm H: Giao điểm của l, m

a. Tứ giác CEHD có \(\widehat{HEC}=\widehat{HDC}=90^o\Rightarrow\) nó là tứ giác nội tiếp.

b. Tứ giác BFEC có \(\widehat{BEC}=\widehat{BFC}=90^o\Rightarrow\)nó là tứ giác nội tiếp. Vậy 4 điểm B, C, E, F cùng thuộc một đường tròn.

c. Ta thấy \(\Delta HAE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AE}{AD}\Rightarrow AE.AC=AH.AD\)

Ta thấy \(\Delta CBE\sim\Delta CAD\left(g-g\right)\Rightarrow\frac{BC}{AC}=\frac{BE}{AD}\Rightarrow AD.BC=BE.AC\)

d. Ta thấy ngay \(\widehat{PCB}=\widehat{BAM}\) (Cùng phụ với góc ABC)

Mà \(\widehat{BAM}=\widehat{BCM}\) (Góc nội tiếp cùng chắn cung BM)

Vậy nên \(\widehat{PCB}=\widehat{BCM}\) hay CM là phân giác góc \(\widehat{PCB}\)

Lại có \(CM⊥HD\) nên HCM là tam giác cân. Vậy CB là trung trực của HM hay H, M đối xứng nhau qua BC.

e. Ta thấy BFHD là tứ giác nội tiếp nên \(\widehat{FDH}=\widehat{FBH}\) (Góc nội tiếp cùng chẵn cung FH)

 DHEC cùng là tứ giác nội tiếp nên \(\widehat{HDE}=\widehat{HCE}\) (Góc nội tiếp cùng chẵn cung HE)

Mà \(\widehat{FBH}=\widehat{HCE}\) ( Cùng phụ với góc \(\widehat{BAC}\) )

nên \(\widehat{FDH}=\widehat{HDE}\) hay DH là phân giác góc FDE.

Tương tự FH, EH cũng là phân giác góc DFE và DEF.

Vậy tâm đường tròn nội tiếp tam giác DEF chính là H.

HD
28 tháng 3 2021

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)