Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAFC vuôngtại F và ΔAED vuông tại E có
AC=AD
góc FAC=góc EAD
=>ΔAFC=ΔAED
=>AF=AE
=>A là trung điểm cua EF
b: DE vuông góc AB
CF vuông góc AB
=>DE//CF
c: Xét tứ giác CFDE có
CF//DE
CF=DE
=>CFDE là hình bình hành
=>CE//DF
a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:
- Góc BAC = 90 độ (do tam giác ABC vuông tại A)
- Góc B = 60 độ (theo đề bài)
- Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ)
- Góc ABD = Góc ABC (do AB // CD theo định lý Thales)
- Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30
- Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC)
- Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)
b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:
- AB^2 = AC^2 + BC^2 = a^2 + b^2
- BC = a
- AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.
c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.
a. Tính góc ADB và góc BDC: Gọi góc ADB = x, góc BDC = y. Ta có thể sử dụng các quy tắc góc chắn cung và góc nội tiếp để tính góc như sau:
- Góc BAC = 90 độ (do tam giác ABC vuông tại A)
- Góc B = 60 độ (theo đề bài)
- Góc ABC = 180 - Góc BAC - Góc B = 30 độ (tổng các góc của tam giác ABC bằng 180 độ)
- Góc ABD = Góc ABC (do AB // CD theo định lý Thales)
- Góc DAB = 180 - Góc ADB - Góc ABD = 180 - x - 30
- Góc BCD = Góc BAC (do CD là tiếp tuyến của đường tròn ngoại tiếp tam giác BDC)
- Góc BDC = 180 - Góc BCD - Góc B = 90 - Góc BAC/2 = 45 độ (do tam giác BCD cân tại B)
b. So sánh các cạnh của tam giác ABD: Để so sánh các cạnh của tam giác ABD, ta cần tính độ dài các cạnh. Theo định lý Pythagoras trong tam giác vuông ABC, ta có:
- AB^2 = AC^2 + BC^2 = a^2 + b^2
- BC = a
- AC = b Vậy AB = sqrt(a^2 + b^2). Tương tự, ta có CD = b và BD = c*sqrt(3)/2 (tính theo phương pháp trong câu trả lời trước). Do đó, ta có thể so sánh các cạnh của tam giác ABD theo thứ tự tăng dần: CD < AB < BD.
c. So sánh các góc của tam giác BDC: Trong tam giác BDC, ta đã tính được góc BDC = 45 độ (như ở câu a). Do tam giác BDC cân tại B, nên góc CBD cũng bằng 45 độ. Vì vậy, hai góc của tam giác BDC bằng nhau và bằng 45 độ.
\(\widehat{EAC}=180^o-\widehat{BAC}=180^o-110^o=70^o\)
Tam giác ABC cân ở A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-110^o}{2}=35^o\) (1)
CE // AD => \(\widehat{ECD}+\widehat{ADC}=180^o\) (\trong cùng phía)
=> \(\widehat{ECD}=180^o-\widehat{ADC}=180^o-105^o=75^o\) (2)
Ta lại có: \(\widehat{ACE}=\widehat{ECD}-\widehat{ACB}=75^o-35^o=40^o\)
Trong tam giác ACE có \(\widehat{EAC}=70^o;\widehat{ACE}=40^o\)
nên góc còn lại \(\widehat{AEC}=180^o-70^o-40^o=70^o\)
Vậy tam giác ACE cân ở C và ta có:
\(70^o=\widehat{A}=\widehat{E}>\widehat{C}=40^o\)
CA = CE > AE
a) Xét t/g ABD và t/g HBD có:
AB = BH (gt)
ABD = HBD ( vì BD là phân giác ABC)
BD là cạnh chung
Do đó, t/g ABD = t/g HBD (c.g.c)
=> BAD = BHD = 90o (2 góc tương ứng)
=> DH _|_ BC (đpcm)
b) t/g ABD = t/g HBD (câu a)
=> ADB = HDB (2 góc tương ứng)
Mà ADB + HDB = ADH = 110o
Do đó, ADB = HDB = 110o : 2 = 55o
t/g ABD vuông tại A có: ABD + ADB = 90o
=> ABD + 55o = 90o
=> ABD = 90o - 55o = 35o
k nhé
a,Do AD nằm trong góc CDB nên ta có:
ADC + ADB = 180do (ke bu)
ADC + 84 = 180
ADC = 96
B, trong tam giác ADC ta có ;
ADC + ACD+CAD = 180 (định lí tổng ba góc trong tam giác)
96 + 40 + CAD =180
CAD =44
vì AD là phân giác của góc CAB nền CAD= BAD=44,ta co : CAD + DAB = CAB
2CAD = CAB
2 . 44 = CAB
88 = CAB
vì ADC là góc ngoài tại đỉnh A của tam giác ADB nen ta co
ADC = DAB + ABD
96 = 44 + ABD
ABD = 52
a: góc C=180-80-60=40 độ
góc A>góc B>góc C
=>BC>AC>AB
b: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
c: Xét ΔDMC và ΔDAH có
góc DMC=góc DAH
DM=DA
góc MDC=góc ADH
=>ΔDMC=ΔDAH
=>DC=DH
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
a) Góc C = 180 - 60 - 80 = 400
Góc BAD = góc CAD = \(\dfrac{60}{2}\) = 300
Góc ADB = 180 - 80 - 30 = 700
b) Vì góc BAD < góc ADB < góc ABD
nên BD < AB < AD
c) Góc ADC = 180 - 70 = 1100
Vì góc ADC > góc C > góc DAC
nên AC > AD > CD