Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét \(\Delta ABC\)CÓ
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow80^o+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=100^o\)
mà hai tia BI và CI lần lượt là tia hân giác của ^B và ^C
\(\Rightarrow\widehat{B_1}+\widehat{B_2}+\widehat{C_1}+\widehat{C_2}=100^o\)
\(\Rightarrow2\widehat{B_2}+2\widehat{C_2}=100^o\)
\(\Rightarrow2\left(\widehat{B_2}+\widehat{C_2}\right)=100^o\)
\(\Rightarrow\widehat{B_2}+\widehat{C_2}=50^o\)
XÉT \(\Delta BCI\)Có
\(\widehat{B_2}+\widehat{C_2}+\widehat{BIC}=180^o\left(đl\right)\)
THAY \(50^o+\widehat{BIC}=180^o\)
\(\Rightarrow\widehat{BIC}=180^o-50^o=130^o\)
B) TA CÓ
\(\widehat{BIC}=130^o;\widehat{BAC}=80^o\)
\(\Rightarrow\widehat{BIC}>\widehat{BAC}\left(1\right)\left(130^o>80^o\right)\)
mà \(\widehat{BIC}>\widehat{BMC}\left(2\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)
MÀ \(\widehat{BAM}< \widehat{BMC}\)HAY \(\widehat{BAC}< \widehat{BMC}\left(3\right)\)( Góc ngoài của tam giác lớn hơn mỗi góc trong không kề với nó.)
TỪ (1) VÀ (2) VÀ (3) \(\Rightarrow\widehat{BIC}>\widehat{BMC}>\widehat{BAC}\)
Bài 2:
Vì BI,CI lần lượt là tia phân giác của góc B và góc C
Ta có:
\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\frac{\widehat{ABC}+\widehat{ACB}}{2}\)
\(\widehat{BIC}=180^o-\frac{180^o-\widehat{A}}{2}=125^o\)
BK,BI là các tia phân giác của hai góc kề bù \(\Rightarrow\widehat{EBK}=90^o\)
Tương tự ta có: \(\widehat{ICK}=90^o\)
Tứ giác IBKC có:
\(\widehat{IBK}+\widehat{ICK}+\widehat{BIC}+\widehat{BKC}=360^o\)
\(\Rightarrow\widehat{BKC}+90^o+90^o+125^o=360^o\Rightarrow\widehat{BKC}=55^o\)
\(\Delta EBK\) vuông tại B có \(\widehat{EKC}=55^o\)
\(\Rightarrow\widehat{BEK}=90^o-55^o=35^o\)
Bài 2: Em tham khảo bài tương tự tại đây nhé.
Câu hỏi của Dang Khanh Ngoc - Toán lớp 7 - Học toán với OnlineMath