Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔA'B'C'∼ΔABC
nên A'B'/AB=B'C'/BC=A'C'/AC
=>A'B'/6=B'C'/12=A'C'/8=3/2
=>A'B'=9cm; B'C'=18cm; A'C'=12cm
b: Ta có: ΔA'B'C'∼ΔABC
nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
DO đó: ΔABC∼ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{9^2}{15}=5.4\left(cm\right)\)
a) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{B}chung.\)
\(\Rightarrow\) \(\Delta ABC\sim\text{}\text{}\Delta HBA\left(g-g\right).\)
b) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A, đường cao AH:
\(AB^2=HB.BC\) (Hệ thức lượng).
\(\Rightarrow9^2=HB.15.\\ \Rightarrow HB=5,4\left(cm\right).\)
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)