K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

b: ΔCAB có DE//AB

nên CD/CB=DE/AB

=>CD/CE=CB/AB=15/9=5/3

c: AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=15/7

=>BD=45/7cm

=>BD/BC=3/7

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot9\cdot12=108\cdot\dfrac{3}{14}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)

2 tháng 3 2022

a. Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)

Áp dụng t/c tia phân giác góc A, ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)

\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)

\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)

Xét tam giác ABD và tam giác ADE có:

\(\widehat{E}=\widehat{D}=90^0\)

AD: cạnh chung

\(\widehat{BAD}=\widehat{DAE}\) ( gt )

=> tam giác ABD = tam giác ADE ( c.g.c )

=> BD = ED = \(\dfrac{45}{7}cm\)

b. Xét tam giác ABD và tam giác ABC, có:

\(\widehat{BAC}=\widehat{BDA}=90^0\)

\(\widehat{B}:chung\)

Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )

\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)

\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)

\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)

\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)

\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)

\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)

 

 

 

 

 

 

 

 

19 tháng 4 2018

A B C D E

a) Ra có tam giác ABC vuông tại A ( gt )

\(\Rightarrow BC^2=AB^2+AC^2=9^2+12^2=81+144=225\left(cm\right)\)

\(\Rightarrow BC=15\left(cm\right)\)

Vì AD là tia phân giác của \(\widehat{BAC}\)( gt )

\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{12}{9}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\)\(\Rightarrow\frac{BC}{DB}=\frac{7}{3}\)

\(\Rightarrow DB=\frac{3}{7}.BC=\frac{3}{7}.15=\frac{45}{7}\left(cm\right)\)

\(\Rightarrow DC=15-\frac{45}{7}=\frac{60}{7}\left(cm\right)\)

Ta có DE // AB ( Vì AB và DE vuông góc với AC )

Áp dụng hệ quả định lý Ta lét ta có:

\(\Rightarrow\frac{DE}{AB}=\frac{CD}{CB}=\frac{60}{\frac{7}{15}}=\frac{4}{7}\)\(\Rightarrow DE=\frac{4}{7}.AB=\frac{4}{7}.9=\frac{36}{7}\left(cm\right)\)

b) Ta có: \(S_{ADC}=\frac{1}{2}.DE.AC=\frac{1}{2}.\frac{36}{7}.12=\frac{216}{7}\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.9.12=54\left(cm^2\right)\)

\(\Rightarrow S_{ABD}=S_{ABC}-S_{ACD}=54-\frac{216}{7}=\frac{126}{7}\left(cm^2\right)\)

9 tháng 7 2020

A B E C 5 6 7

a) Do AE là đường phân giác của ABC , nên :

\(\frac{AB}{AC}=\frac{BE}{EC}\)suy ra \(\frac{EC}{AC}=\frac{BE}{AB}\)

( tính chất của tỉ lệ thức )

Áp dụng tính chất của DTSBN , ta có :

\(\frac{EC}{AC}=\frac{BE}{AB}=\frac{EC+BE}{AC+AB}=\frac{BC}{6+5}=\frac{7}{11}\)

+) \(\frac{EC}{AC}=\frac{7}{11}\Rightarrow\frac{EC}{6}=\frac{7}{11}\)

\(\Rightarrow EC=\frac{6.7}{11}=\frac{42}{11}\)

+) \(EB=BC-EC=7-\frac{42}{11}=\frac{35}{11}\)