Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
b: ΔCAB có DE//AB
nên CD/CB=DE/AB
=>CD/CE=CB/AB=15/9=5/3
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=15/7
=>BD=45/7cm
=>BD/BC=3/7
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot9\cdot12=108\cdot\dfrac{3}{14}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)
a. Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)
Áp dụng t/c tia phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)
\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)
\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)
Xét tam giác ABD và tam giác ADE có:
\(\widehat{E}=\widehat{D}=90^0\)
AD: cạnh chung
\(\widehat{BAD}=\widehat{DAE}\) ( gt )
=> tam giác ABD = tam giác ADE ( c.g.c )
=> BD = ED = \(\dfrac{45}{7}cm\)
b. Xét tam giác ABD và tam giác ABC, có:
\(\widehat{BAC}=\widehat{BDA}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)
\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)
\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)
\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)
\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)
\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)
a) Ra có tam giác ABC vuông tại A ( gt )
\(\Rightarrow BC^2=AB^2+AC^2=9^2+12^2=81+144=225\left(cm\right)\)
\(\Rightarrow BC=15\left(cm\right)\)
Vì AD là tia phân giác của \(\widehat{BAC}\)( gt )
\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{12}{9}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\)\(\Rightarrow\frac{BC}{DB}=\frac{7}{3}\)
\(\Rightarrow DB=\frac{3}{7}.BC=\frac{3}{7}.15=\frac{45}{7}\left(cm\right)\)
\(\Rightarrow DC=15-\frac{45}{7}=\frac{60}{7}\left(cm\right)\)
Ta có DE // AB ( Vì AB và DE vuông góc với AC )
Áp dụng hệ quả định lý Ta lét ta có:
\(\Rightarrow\frac{DE}{AB}=\frac{CD}{CB}=\frac{60}{\frac{7}{15}}=\frac{4}{7}\)\(\Rightarrow DE=\frac{4}{7}.AB=\frac{4}{7}.9=\frac{36}{7}\left(cm\right)\)
b) Ta có: \(S_{ADC}=\frac{1}{2}.DE.AC=\frac{1}{2}.\frac{36}{7}.12=\frac{216}{7}\left(cm^2\right)\)
Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.9.12=54\left(cm^2\right)\)
\(\Rightarrow S_{ABD}=S_{ABC}-S_{ACD}=54-\frac{216}{7}=\frac{126}{7}\left(cm^2\right)\)
a) Do AE là đường phân giác của ABC , nên :
\(\frac{AB}{AC}=\frac{BE}{EC}\)suy ra \(\frac{EC}{AC}=\frac{BE}{AB}\)
( tính chất của tỉ lệ thức )
Áp dụng tính chất của DTSBN , ta có :
\(\frac{EC}{AC}=\frac{BE}{AB}=\frac{EC+BE}{AC+AB}=\frac{BC}{6+5}=\frac{7}{11}\)
+) \(\frac{EC}{AC}=\frac{7}{11}\Rightarrow\frac{EC}{6}=\frac{7}{11}\)
\(\Rightarrow EC=\frac{6.7}{11}=\frac{42}{11}\)
+) \(EB=BC-EC=7-\frac{42}{11}=\frac{35}{11}\)