Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)gọi AH là đường cao tam giác ABC .
+)S tam giác ACD LÀ 1/2 x AH x CD = 1/2 x AH x 1/2 x BC = 1/2 x 250 = 125 cm^2
1. Ta thấy tam giác DEC Và DBE có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng EC, EB bằng nhau nên Hai tam giác DEC, DEB bằng nhau
Ta thấy tam giác DEI , DAI có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác DIA, DIE bằng nhau [1]
Ta thấy hai tam giác AIB, IBE có chung chiều cao hạ từ đỉnh B mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác ABI, IBE bằng nhau [2]
Từ [1] và [2] => Hai tam giác ABD và DBE bằng nhau mà hai tam giác DBE, DEC bằng nhau
=> Hai tam giác ABD , DEC bằng nhau
=> Tổng diện tích DBE, DEC gấp đôi diện tích tam giác ABD mà hai tam giác có trung chiều cao hạ từ B xuống nên đoạn thẳng DC gấp đôi đoạn thẳng AD.
Ta thấy hai tam giác AEC và AEB có chiều cao hạ từ A xuống mà đoạn thẳng BE và EC bằng nhau nên hai tam giác AEC và AEB bằng nhau
=> Tam giác AEC = 360 : 2 = 180 [cm2 ]
Ta thấy hai tam giác DEC và DEA có chung chiều cao hạ từ E mà đoạn thẳng DC gấp đôi AD
=> Tam giác AED = \(\frac{1}{3}\)tam giác AEC
=> Tam giác AED = \(\frac{1}{3}\) x 180
= 60 [cm2]
Từ [1] ta thấy diện tích tam giác ADI = \(\frac{1}{2}\) tam giác ADE
=>ADI = 60 x \(\frac{1}{2}\)
=> ADI = 30 [cm2]
Vậy diện tích tam giác ADI = 30 cm2
Giải
1)
2)
a) Gọi A là đáy, H là chiều cao
Theo đề bài ta có:
\(\frac{AxH}{2}\) = 72 và \(\frac{A}{12}\) = \(\frac{H}{3}\)
\(\frac{A}{12}\) = \(\frac{Hx4}{3x4}\) = \(\frac{Hx4}{12}\)
Vậy A = H x 4
Thế A vào thì ta có:
\(\frac{Hx4xH}{2}\) = 72
\(Hx4^2\) = 144
\(H^2\) = 144 : 4
\(H^2\) = 36
\(H^2\) = 6 x 6
H = 36
Thế H vào thì ta có:
\(\frac{Ax6}{2}\) = 72
A x 6 = 72 x 2
A x 6 = 144
A = 144 : 6
A = 24
b)
Nối B với N, ta có: S(NBM) = S( NMC). Vì hai tam giác có chung đường cao hạ từ N xuống BC và đáy BM = MC (*).
Theo bài ra MN // AB, nên đường cao hạ từ B xuống MN bằng đường cao hạ từ A xuống MN. Do đó ta có: S( BMN) = S(AMN). Vì hai tam giác có đường cao bằng nhau, đáy MN chung (**)
Từ (*) và (**) ta có: S(AMN) = S(MNC). Vì hai tam giác có diện tích cùng bằng S(BMN).
Do S(AMN) + S(MNC) = S(AMC)
Mà S(AMC) = 1/2 S(ABC). Vì hai tam giác chung đường cao hạ từ A xuống BC, đáy MC = 1/2 BC.
Vậy S(MNC) = 1/4 S(ABC) = 72 : 4 = 18 (cm2).
B1:
Diện tích tam giác ABC là:
54 × 60 : 2 = 1620 ( m2 )
Nối A với N ta được tam giác ANC có chiều cao là 10cm và đáy AC là 54cm
Diện tích tam giác ANC là :
10 × 54 : 2 = 270 ( m2 )
Diện tích tam giác ABN là:
1620 - 270 = 1350 ( m2 )
Độ dài đoạn MN là:
1350 × 2 : 60 = 45 ( m)
Vậy đoạn MN dài 45m
a. Gọi AH là đường cao hạ từ đỉnh A của tam giác ABC.
Ta có: \(S_{\Delta ABC}=\dfrac{1}{2}.AH.BC.\)
\(S_{\Delta ACD}=\dfrac{1}{2}.AH.CD=\dfrac{1}{2}.AH.\dfrac{1}{3}BC.\)
\(\Rightarrow\dfrac{1}{3}S_{\Delta ABC}=S_{\Delta ACD}.\Rightarrow S_{\Delta ACD}=\dfrac{1}{3}.150=50cm^2.\)
b. Gọi BK là đường cao hạ từ đỉnh B của tam giác ABC.
Ta có: \(S_{\Delta ABE}=\dfrac{1}{2}.BK.BE;S_{\Delta EBF}=\dfrac{1}{2}.BK.EF;S_{\Delta FBC}=\dfrac{1}{2}.BK.FC.\)
Mà AE = EF = FC (đề bài).
\(\Rightarrow\) Diện tích các tam giác ABE, BEF, BCF bằng nhau.
Đáy BD của hình ABD =5 cm. Vậy chiều cao AB là:37,5/5=7,5cm
Đáy BC của tam giác ABC là:150/7,5=20cm
Đ/S:20 cm