K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 7 2020
Cho tam giác ABC và điểm M trong tam giác. Gọi khoảng cách từ M đến các cạnh BC, CA, AB lần lượt là da, db, dc và khoảng cách từ M đến các đỉnh A,B,C là x,y,z và AB=c, BC=a, CA=b. CMR:
x+y+z\(\ge\)2(da+db+dc) ( BĐT Erdos )
Áp dụng BĐT Bunhiacopxki cho 2 bộ số \(\left(\sqrt{ax},\sqrt{by},\sqrt{cz}\right)\) và \(\left(\sqrt{\frac{a}{x}};\sqrt{\frac{b}{y}};\sqrt{\frac{c}{z}}\right)\)có:
\(\left(ax+by+cz\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\left(\sqrt{ax}.\sqrt{\frac{a}{x}}+\sqrt{by}.\sqrt{\frac{b}{y}}+\sqrt{cz}.\sqrt{\frac{c}{z}}\right)^2\)
Suy ra \(\left(ax+by+cz\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\left(a+b+c\right)^2\)(1)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z\), tức là M cách đều BC,CA,AB hay M là tâm nội tiếp \(\Delta\)ABC
Ta có \(2S_{ABC}=2S_{BMC}+2S_{CMA}+2S_{AMB}=ax+by+cz\) (2)
Từ (1) và (2) suy ra \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{2S_{ABC}}=const\)
Vậy Min \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{\left(a+b+c\right)^2}{2S_{ABC}}\). Đạt được khi M là tâm nội tiếp \(\Delta\)ABC.