K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

21 tháng 4 2015

A B C D 1 2 c a b

*) Nếu A = 2 góc B thì a2 = b2 + bc.

Kẻ AD là phân giác của góc A => góc A1 = A2 = A/ 2

=> góc  A1 = A2 = góc B

Xét tam giác ABC và tam giác DAC có: góc C chung ; góc A2 = góc B

=> tam giác ABC đồng dạng với tam giác DAC ( g - g)

=> \(\frac{DC}{AC}=\frac{AC}{BC}\Rightarrow\frac{DC}{b}=\frac{b}{a}\) (1)

Do AD là p/g của góc BAC nên \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}\) (theo tính chất của dãy tỉ số bằng nhau)

\(\Rightarrow\frac{DC}{b}=\frac{a}{b+c}\) (2)

Từ (1)(2) => \(\frac{a}{b+c}=\frac{b}{a}\Rightarrow a^2=b\left(b+c\right)=b^2+bc\)

*) Ngược lại: Nếu a2 = b2 + bc => góc A = 2 . góc B

Kẻ AD là phân giác của góc A => \(\frac{DC}{AC}=\frac{DB}{AB}\Rightarrow\frac{DC}{AC}=\frac{DC+DB}{AC+AB}=\frac{BC}{AC+AB}=\frac{a}{b+c}\)(3)

\(a^2=b^2+bc=b\left(b+c\right)\Rightarrow\frac{b}{a}=\frac{a}{b+c}\Rightarrow\frac{AC}{BC}=\frac{a}{b+c}\)(4)

từ (3)(4) => \(\frac{DC}{AC}=\frac{AC}{BC}\) mà có góc ACB chung 

=> tam giác DAC đồng dạng với tam giác ABC (c - g - c)

=> góc A2 = góc B 

mà góc A= 2. góc A2 nên góc A = 2. góc B

18 tháng 7 2018

Ta có; \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Mà \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Vậy...

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0