Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
Xét ΔAHB vuông tại H và ΔACD vuông tại C có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
b: góc HAC+góc AHE
=góc ABE+90 độ-góc HAB
=90 độ
=>HE vuông góc AC
=>HE//CD
tứ giác ABHE nooj tiếp => góc ABH = góc HED (1)
Mà góc ADC= gcos ABC (2)
tỪ 1 VÀ 2 => HED = EDC => EH// DC
TỨ GIÁC ABDC nt =>GÓC BAD +GÓC HED =180 ĐỘ
MẶT KHÁC GÓC BAD =BCD =1/2 CUNG BD
TỪ ĐÓ=>>HE // DC
a: góc AEB=góc AHB=90 độ
=>AEHB nội tiếp
góc AGD=1/2*180=90 độ
=>GD vuông góc AH
=>GD//BC
b: ABHE nội tiếp
=>góc EHC=góc BAD
mà góc BAD=góc DCB
nên góc EHC=góc DCB
=>EH//CD
góc ACD=1/2*180=90 độ
=>AC vuông góc CD
=>EH vuông góc AC tại N
=>góc ANH=90 độ
a: Vì góc AEB=góc AHB=90 độ
=>AHBE nội tiếp
góc AGD=1/2*180=90 độ
=>AG vuông góc GD
=>GD//BC
b:
Xét ΔAHB vuông tại H và ΔACD vuông tạiC có
góc ABH=góc ADC
=>ΔAHB đồng dạng với ΔACD
=>góc BAH=góc DAC
góc NAH+góc NHA
=góc ABE+góc BAE=90 độ
=>ΔAHN vuông tại N
Hình bạn tự vẽ nha!!
a.)Ta có:\(AH\perp BC\Rightarrow\widehat{AHB}=90^0\)
\(BE\perp AD\Rightarrow\widehat{AEB}=90^0\)
Xét tứ giác \(AEHB\)có:
\(\widehat{AHB}=\widehat{AEB}\left(=90^0\right)\)
Mà 2 góc này cùng nhìn \(AB\)
\(\Rightarrow\)Tứ giác\(AEHB\)nội tiếp (o)
\(\Rightarrow\)\(A,E,H,B\in\)đường tròn.
b.)Có tứ giác \(AEHB\)nội tiếp
\(\Rightarrow\widehat{DEH}=\widehat{HBA}\)
\(\Rightarrow\widehat{DEH}=\widehat{CBA}\)
Trong (o) có:\(\widehat{CDA}=\widehat{CBA}\)(2 góc nội tiếp chắn cung \(AC\))
\(\Rightarrow\widehat{CDA}=\widehat{DEN}\left(=\widehat{CBA}\right)\)
Mà 2 góc này ở vị trí SLT
\(\Rightarrow EH//CD\left(\text{đ}pcm\right)\)