Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)
\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEB}=\widehat{BED}\)
hay EB là tia phân giác góc FED
a: Xét tứ giác BDHF có
\(\widehat{BDH}+\widehat{BFH}=180^0\)
Do đó: BDHF là tứ giác nội tiếp
Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB∼ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
1: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
2: Xét ΔKBF và ΔKEC có
góc KBF=góc KEC
góc K chung
=>ΔKBF đồng dạng với ΔKEC
=>KB/KE=KF/KC
=>KB*KC=KE*KF
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\)
nên BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{HDC}+\widehat{HEC}=180^0\)
Do đó: CDHE là tứ giác nội tiếp