K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

a) Mình đã trình bày tại đây:

Câu hỏi của Tân Nhỏ - Toán lớp 9 | Học trực tuyến

b)

Ta thấy \(\sin A=\frac{BK}{AB}\) \(\Rightarrow BK=AB\sin A\)

\(\Rightarrow A_{ABC}=\frac{BK.AC}{2}=\frac{AB.\sin A.AC}{2}=\frac{\sin A.AB.AC}{2}\)

Hoàn toàn tương tự: \(S_{AIK}=\frac{\sin A.AI.AK}{2}\)

Do đó:

\(\frac{S_{AIK}}{S_{ABC}}=\frac{\sin A.AI.AK}{2}:\frac{\sin A.AB.AC}{2}=\frac{AI}{AC}.\frac{AK}{AB}\)

\(=\cos \widehat{IAC}.\cos \widehat{BAK}=\cos A.\cos A=\cos 60.\cos 60=\frac{1}{4}\)

\(\Rightarrow S_{AIK}=\frac{S_{ABC}}{4}=\frac{160}{4}=40(cm^2)\)

30 tháng 6 2019

Cảm ơn

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

Theo công thức lượng giác, ta có:

Xét tam giác $AIC$ vuông tại $I$:\(\cos A=\frac{AI}{AC}\)

Xét tam giác $ABH$ vuông tại $H$: \(\cos B=\frac{BH}{AB}\)

Xét tam giác $BKC$ vuông tại $K$: \(\cos C=\frac{CK}{CB}\)

Từ những điều trên suy ra:

\(\cos A.\cos B.\cos C=\frac{AI}{AC}.\frac{BH}{AB}.\frac{CK}{CB}\)

\(\Rightarrow AI.BH.CK=AB.BC.AC.\cos A.\cos B.\cos C\) (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Hình vẽ:
Tỉ số lượng giác của góc nhọn