K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

a: Xét ΔABM và ΔADM có

AB=AD

AM chung

BM=DM

Do đó: ΔABM=ΔADM

a: Xét ΔAKB và ΔAKC có

AK chung

KB=KC

AB=AC

Do đó: ΔAKB=ΔAKC

6 tháng 1 2021

a) vì K là trung điểm của BC nên

BK=CK=BC/2 ( tính chất)

xét tam giác AKB và tam giác AKC có

AB=AC ( gt)

AK chung

BK=CK( cmt)

⇒tg AKB=tg AKC      (1)

b) từ (1) ⇒góc AKB= góc AKC ( 2 GÓC TƯƠNG ỨNG)

mà góc AKB+ góc AKC= 180 độ ( 2 góc kề bù)

⇒  góc AKB = góc AKC = 180 độ/2 = 90 độ

⇒ AK ⊥ BC 

Mik mới làm được tó đây thôi. chúc cậu hok giỏi nha!!!hihi

 

 

a) Xét ΔAKB và ΔAKC có 

AB=AC(gt)

KB=KC(K là trung điểm của BC)

AK chung

Do đó: ΔAKB=ΔAKC(c-c-c)

b) Ta có: ΔABC vuông cân tại A(gt)

mà AK là đường trung tuyến ứng với cạnh đáy BC(K là trung điểm của BC)

nên AK là đường cao ứng với cạnh BC(Định lí tam giác cân)

hay AK⊥BC(đpcm)

c) Ta có: CE⊥CB(gt)

AK⊥BC(cmt)

Do đó: AK//CE(Định lí 1 từ vuông góc tới song song)

d) Xét ΔCEB vuông tại C có \(\widehat{B}=45^0\)(Số đo của một góc nhọn trong ΔABC vuông cân tại A)

nên ΔCEB vuông cân tại C(Dấu hiệu nhận biết tam giác vuông cân)

hay CE=CB(đpcm)

a) ta có AB=AC\(\Rightarrow\Delta ABC\) là tam giác vuông cân tại A

\(\Rightarrow\widehat{ACB}=\widehat{ABC}\) hay \(\widehat{ACK}=\widehat{ABK}\)

Xét \(\Delta AKB\) và \(\Delta AKC\) có

\(AB=AC\) ( giả thiết )

\(\widehat{ABK}=\widehat{ACK}\) (chứng minh trên)

\(KB=KC\) ( Vì K là trung điểm của BC )

 \(\Rightarrow\Delta AKB=\Delta AKC\left(c-g-c\right)\)

vậy  \(\Delta AKB=\Delta AKC\)

b)  ta có \(\Delta AKB=\Delta AKC\) (chứng minh câu a)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)

mà \(\widehat{AKB}+\widehat{AKC}=180độ\) (2 góc kề bù)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\dfrac{180độ}{2}=90độ\)

\(\Rightarrow AK\perp BC\)

vậy \(AK\perp BC\)

c) ta có \(AK\perp BC\) (chứng minh trên)

mà \(EC\perp BC\) ( giả thiết )

\(\Rightarrow EC//AK\)

vậy \(EC//AK\)

d) ta có \(\Delta ABC\)  là tam giác vuông cân

\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45độ\)

ta có \(EC\perp BC\Rightarrow\widehat{BCE}=90độ\)

ta có \(\widehat{ACB}+\widehat{ACE}=\widehat{BCE}\)

          \(45độ+\widehat{ACE}=90độ\)

                       \(\widehat{ACE}=90độ-45độ=45độ\)

\(\Rightarrow\widehat{ACE}=\widehat{ACB}=45độ\)

ta có  \(\widehat{CAB}+\widehat{CAE}=180độ\) (2 góc kề bù)

\(\Rightarrow90độ+\widehat{CAE}=180độ\)

\(\Rightarrow\widehat{CEA}=180độ-90độ=90độ\)

\(\Rightarrow\widehat{CAE}=\widehat{CAB}=90độ\)

Xét \(\Delta ACE\) và \(\Delta CAB\) có 

\(\widehat{ACE}=\widehat{ACB}\)  (chứng minh trên)

CA là cạnh chung

\(\widehat{CAE}=\widehat{CAB}\) (chứng minh trên

\(\Rightarrow\Delta ACE=\Delta ACB\left(g-c-g\right)\)

\(\Rightarrow CE=CB\)

vậy \(CE=CB\)