Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ ( vẽ ở đây hơi khó )
a,Tam giác ABC cân tại A
=> \(\widehat{BAC}=180^o-2\widehat{ACB}^{\left(1\right)}\)
Tam giác IAC cân tại I ( tự chứng minh tam giác IAM = tam giác IMC )
=>\(\widehat{AIC}=180^o-2\widehat{ACB}^{\left(2\right)}\)
Từ (1)(2) => \(\widehat{BAC}=\widehat{AIC}\)
b,\(\widehat{IBA}=\widehat{BAC}+\widehat{ACB}\)(t/c góc ngoài của tam giác)
\(\widehat{KAC}=\widehat{AIC}+\widehat{ACB}\) (t/c góc ngoài của tam giác)
mà \(\widehat{BAC}=\widehat{AIC}\left(cmt\right)\)
\(\Rightarrow\widehat{IBA}=\widehat{KAC}\)
Xét tam giác KAC và tam giác IBA có :
KA = IB (gt)
góc IBA = góc KAC (cmt)
AC = BA(gt)
=> tam giác KAC = tam giác IBA (c.g.c)
=> AI=KC (2 cạnh tương ứng)
mà AI = IC => KC=IC
c,CI = CK (câu b) => tam giác CIK cân tại C
Do đó góc ICK = 90o <=> góc K = góc AIC =45o
<=> góc BAC = 45o ( vì góc AIC = góc BAC (câu a))
Vậy tam giác ABC có AB=AC ,AB>BC và góc BAC = 45o thì góc ICK = 90o
d, Đang nghĩ :(
Làm tiếp câu D
\(S_{\Delta ICK}=S_{\Delta ABC}+S_{\Delta AIB}+S_{\Delta AKC}=S_{\Delta ABC}+2_{\Delta AIB}\) (Vì \(\Delta AIB=\Delta AKC\))
Mà \(S_{\Delta AIC}=3S_{\Delta ABC}\Rightarrow3S_{\Delta ABC}=S_{\Delta ABC}+2S_{\Delta AIB}\Rightarrow S_{\Delta ABC}=S_{\Delta AIB}\)
\(\Rightarrow IB=BC\)( vì chung chiều cao kẻ từ A)
Mà AB cắt IM tại H -> H là trọng tâm của tam giác AIC
-> CH đi qua trung điểm của AI
P/s: Bài này bn nên vẽ hai hình
Ta có : Tam giác ABM cân tại B
=>MAB^=AMB^ (1)
Lại có : IMB^=IAB^=90* (2)
Từ 1 và 2 : +)IAM^=90*-MAB^
+)IMA^ =90*-AMB^
=>IAM^=IMA^
=>Tam giác IAM cân tại I
=>IA=iM
''∠'' là góc nhé.
a) Vì ∆ABC vuông tại A (GT)
=> ∠BAC = 90o (ĐN) (1)
Vì IM ⊥ BC (GT)
=> ∠IMB = 90o
Mà ∠BAC = 90o (Theo (1))
(Ngoặc ''}'' 2 điều trên)
=> ∠BAC = ∠IMB = 90o
Hay ∠BAI = ∠IMB = 90o (2)
Xét ∆ABI và ∆MBI có :
∠BAI = ∠IMB = 90o (Theo (2))
BI chung
BA = BM (Gt)
=> ∆ABI = ∆MBI (cạnh huyền - cạnh góc vuông)
=> AI = IM (2 cạnh tương ứng) (3)
b) Ta có : ∠BAC + ∠NAC = 180o (2 góc kề bù)
Mà ∠BAC = 90o (Theo (1))
=> 90o + ∠NAC = 180o
=> ∠NAC = 180o - 90o = 90o
Vì IM ⊥ BC (GT) => ∠IMC = 90o (ĐN)
(Ngoặc ''}'' 2 điều trên)
=> ∠NAC = ∠IMC = 90o
Hay ∠NAI = ∠IMC = 90o (4)
Lại có : ∠I1 = ∠I2 (2 góc đối đỉnh) (5)
Xét ∆ANI và ∆MCI có :
∠NAI = ∠IMC = 90o (Theo (4))
AI = MI (Theo (3))
∠I1 = ∠I2 (Theo (5))
=> ∆ANI = ∆MCI (g.c.g)
=> AN = MC (2 cạnh tương ứng)
Mà AN + BA = BN
MC + BM = BC
BA = BM (GT)
(Ngoặc ''}'' 4 điều trên)
=> BN = BC
=> ∆NBC cân tại B (ĐN)
P/s : Xin lỗi, mình chỉ làm được đến đây thôi, nghỉ nhiều quá nên mình ngu hẳn, có gì mình nghiên cứu lại sau :(.