K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2019

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét tam giác ANC vuông tại N: Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

27 tháng 3 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ BK ⊥ AC (K ∈ AC).

Trong tam giác vuông BKC có:

∠ K B C   =   9 ° o   –   30 °   =   60 ° = >   ∠ K B A   =   60 °   –   38 °   =   22 °

BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )

Xét tam giác ABK vuông tại K:

 Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Xét tam giác ANB vuông tại N:

 Để học tốt Toán 9 | Giải bài tập Toán 9

=> AN = ABsinABN = 5,93.sin38° ≈ 3,65(cm)

b) Xét tam giác ANC vuông tại N:

 Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

28 tháng 9 2018

kẻ BK vuongAC ^CBK vuong tai K và ^C = 30 độ  = > tam giácCBK nửa đều BK = BC/2 = 5,5 ^KBC = 180-(BKA+^C) = 60độ ^KBA = ^KBC-^ABC = 22 độ  = >tam giác KBA có KBA = 22 độ  = >AB = BK:sinKBA = 5,5:sin22 = 5,93194 AN = AB.sinABN = 3,65207 b) AC = 2AN = 7,30414

16 tháng 8 2020

38 38 o o A B C K N

Kẻ \(BK\perp AC\left(K\in AC\right)\)

Trong tam giác vuông BKC có:

 \(\widehat{KBC}=60^o-30^o=60^o\)

 \(\Rightarrow\widehat{KBA}=60^o-38^o=22^o\)

BC = 11 (cm) => BK = 5,5 (cm) ( tính chất cạnh đối diện góc 30° trong tam giác vuông bằng nửa cạnh huyền )

Xét tam giác ABK vuông tại K : \(\cos KBA=\frac{BK}{AB}\)

\(\Rightarrow AB=\frac{BK}{\cos KBA}=\frac{5,5}{\cos22^o}\approx5,93\left(cm\right)\)

Xét tam giác ANB vuông tại N : \(\sin ABN=\frac{AN}{AB}\)

\(\Rightarrow AN=AB\sin ABN=5,93.\sin38^o\approx3,65\left(cm\right)\)

b) Xét tam giác ANC vuông tại N : \(\sin ACN=\frac{AN}{AC}\)

\(AC=\frac{AN}{\sin ACN}\approx\frac{3,65}{\sin30^o}\approx7,3\left(cm\right)\)

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

20 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong tam giác vuông ABN, ta có:

AN = AB.sinB

= 11.sin 38 °  ≈ 6,772 (cm)

Trong tam giác vuông ACN, ta có:

AC = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

= 13,544 (cm)