K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2022

undefined

\(\text{a)}\text{Xét }\Delta ABI\text{ và }\Delta ACI\text{ có:}\)

\(AB=AC\left(gt\right)\)

\(BI=CI\text{(I trung điểm BC)}\)

\(AI\text{ chung}\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\text{b)Xét }\Delta AIC\text{ và }\Delta DIB\text{ có:}\)

\(AI=DI\left(gt\right)\)

\(\widehat{AIC}=\widehat{DIB}\text{(đối đỉnh)}\)

\(IC=IB\)

\(\Rightarrow\Delta AIC=\Delta DIB\left(c.g.c\right)\)

\(\Rightarrow\widehat{DIB}=\widehat{ICA}\text{(2 góc tương ứng)}\)

\(\text{mà chúng so le trong}\)

\(\Rightarrow AC=BD\)

\(\text{c)Xét }\Delta IKB\text{ và }\Delta IHC\text{ có:}\)

\(\widehat{IKB}=\widehat{IHC}=90^0\)

\(IB=IC\)

\(\widehat{KIB}=\widehat{CIH}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta IKB=\Delta IHC\left(ch-gn\right)\)

\(\Rightarrow IK=IH\)

\(\text{Hình có chỗ nào bạn ko thấy rõ thì ib riêng cho mik nghe:3}\)

25 tháng 11 2018

A B C I H K D

a, Xét △ABI và △ACI có :

AB = AC (gt)

BI = CI (do I là trung điểm BC)

AI chung

=> △ABI = △ACI (c-c-c)

b, Xét △AIC và △DIB có :

AI = DI (gt)

\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)

IC = IB

=> △AIC = △DIB (c-g-c)

=> \(\widehat{DBI}=\widehat{ICA}\) (2 góc tương ứng)

mà 2 góc này ở vị trí so le trong

=> AC // BD

c, Xét △IKB và △IHC có :

\(\widehat{IKB}=\widehat{IHC}=90^O\)

IB = IC

\(\widehat{KIB}=\widehat{CIH}\) (đối đỉnh)

=> △IKB = △IHC (ch-gn)

=> IK = IH

29 tháng 12 2020

con cặc

a: Xét ΔABI vuông tại I và ΔACI vuông tại I có

AI chung

BI=CI

Do đó: ΔABI=ΔACI

b: Ta có: ΔABI=ΔACI

nên AB=AC
hay ΔABC cân tại A

c: Xét tứ giác ABDC có

I là trung điểm của BC

I là trung điểm của AD

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

25 tháng 2 2022

em cảm ơn ạ

a) Xét ΔABI và ΔACI có 

AB=AC(ΔABC cân tại A)

AI chung

BI=CI(I là trung điểm của BC)

Do đó: ΔABI=ΔACI(c-c-c)

nên \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)

mà tia AI nằm giữa hai tia AB,AC

nên AI là tia phân giác của \(\widehat{BAC}\)(đpcm)

b) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: IB=IC(I là trung điểm của BC)

nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AI là đường trung trực của BC

hay AI\(\perp\)BC(đpcm)

c) Xét ΔIHB vuông tại H và ΔIKC vuông tại K có 

IB=IC(I là trung điểm của BC)

\(\widehat{HBI}=\widehat{KCI}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔIHB=ΔIKC(cạnh huyền-góc nhọn)

nên IH=IK(hai cạnh tương ứng)

d) Xét ΔABI vuông tại I và ΔDCI vuông tại I có

IB=IC(I là trung điểm của BC)

IA=ID(gt)

Do đó: ΔABI=ΔDCI(hai cạnh góc vuông)

nên \(\widehat{ABI}=\widehat{DCI}\)(hai góc tương ứng)

mà \(\widehat{ABI}\) và \(\widehat{DCI}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

7 tháng 1 2022

Cho sp đi

7 tháng 1 2022

Cho sp đi

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)