K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

Áp dụng định lý Py-ta-go đảo vào tam giác ABC, có:

 AB2 + AC2 = 62 + 82 = 100 = 102 = BC2

Suy ra tam giác ABC vuông 

!


 

22 tháng 11 2016

+ Xét tam giác ABC có : 
AB^2+AC^2=100 
BC^2=10^2=100 
=> AB^2+ AC^2= 100=BC^2 
=> tam giác ABC vuông tại A ( Py-ta-go)

1 tháng 2 2018

a. 

Xét tam giác ABC :

10=100

8 +  62 = 100

=> 82 + 62 = 102

Suy ra: tam giác ABC là tam giác vuông

Vì: ( Áp dụng đ/l Py-Ta-Go đảo)

b. 

Còn câu b, sao cậu lại bảo tính AC thế, phải là HC chứ!!!!!

24 tháng 4 2020

Ta thấy BC là cạnh lớn nhất

Ta có: \(AB^2+AC^2=6^2+8^2=100.\)

\(BC^2=10^2=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

Xét tam giác ABC có \(BC^2=AB^2+AC^2\)

=> TAM GIÁC ABC vuông tại A( Py-ta-go đảo)

11 tháng 4 2020

a ) Ta có : AB² + AC² = 8² + 6² = 100

                           BC² = 10² = 100

=> AB² + AC² = BC²

=> Tam giác ABC vuông tại A ( Định lý Py-ta-go đảo )

b ) Áp dụng định lý Py - ta - go vào ΔABH vuông tại H có :

                                AH² + BH² = AB²

                       Hay   AH² + 6,4² = 8²

                        <=> AH² = 64 - 40,96 = 23,04

                          => AH = 4,8 cm

Đề sai rồi bạn

7 tháng 3 2022

tui vẽ hoài chẳng ra luôn

28 tháng 1 2022

a. Ta có: \(AB^2+AC^2=6^2+8^2=100=BC^2\)

Áp dụng định lí Py-ta-go đảo ta có: tam giác ABC vuông tại A

b. Xét \(\Delta ABD\) vuông tại A và \(\Delta EBD\) vuông tại E có: \(\left\{{}\begin{matrix}BDchung\\\widehat{ABD}=\widehat{EBD}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta ABD\)=\(\Delta EBD\) \(\Rightarrow\)DA=DE(dpcm)

c. Xét \(\Delta FAD\) vuông tại A và \(\Delta CED\) vuông tại E có: \(\left\{{}\begin{matrix}DA=DE\\\widehat{ADF}=\widehat{EDC}\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta FAD\)=\(\Delta CED\)\(\Rightarrow\)AF=EC

Mà BF=AB+BF, BC=BE+EC, AF=EC, AB=BE

\(\Rightarrow\)BF=BC\(\Rightarrow\)\(\Delta BFC\) cân tại B

d. Xét \(\Delta BFC\) cân tại B có: CA,FE là đường cao giao nhau tại D

\(\Rightarrow\)BD cũng là đường cao của \(\Delta BFC\)

mà \(\Delta BFC\) cân tại B nên BD vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\) BD là đường trung trực (dpcm)

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

8 tháng 2 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(C_{ABC}=6+8+10=24cm\)

b. xét tam giác vuông ABD và tam giác vuông BDM, có:

B : góc chung

AD: cạnh chung

Vậy  tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )

 

8 tháng 2 2022

có vẽ hình nha mọi người

 

1 tháng 3 2019

tự kẻ hình

AB = 6 (gt) => AB^2 = 6^2 = 36

AC = 8 (gt) => AC^2 = 8^2 = 64

=> AB^2 + AC^2 = 36 + 64 = 100

BC = 10 (gt) => BC^2 = 10^2 = 100

=> AB^2 + AC^2 = BC^2

=>  AH^2 + BC^2 = AH^2 = AH^2 + AC^2 + AB^2

=> AH^2 + BC^2 > AB^2 + AC^2

=> AH + BC > AB + AC do AH; BC; AB; AC >0