K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Gọi M(x,y) là điểm cần tìm

\(\overrightarrow{MA}+\overrightarrow{MB}=(-1-2x;8-2y)\)

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=(8-3x;16-3y)\)

Theo giả thiết \(3|\overrightarrow{MA}+\overrightarrow{MB}|=2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|\), suy ra

\(3\sqrt{(-1-2x)^2+(8-2y)^2}=2\sqrt{(8-3x)^2+(16-3y)^2}\)

\(\Leftrightarrow 9(4x^2+4y^2+4x-32y+65)=4(9x^2+9y^2-48x-96y+320)\)

\(\Leftrightarrow 228x+96y-695=0\)

Vậy tập các điểm M cần tìm là đường thẳng 228x+96y-695=0

 

28 tháng 1 2016

0 quá dễ, cho bài khác khó hơn đê!hiuhiu

NV
26 tháng 11 2021

a.

\(\left|\overrightarrow{BD}-\overrightarrow{BC}\right|=\left|\overrightarrow{BD}+\overrightarrow{CB}\right|=\left|\overrightarrow{CD}\right|=CD=a\)

b.

Do O là tâm hình vuông \(\Rightarrow\) O đồng thời là trung điểm AC và BD

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)

Do đó:

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)

\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}=4\overrightarrow{MO}+\overrightarrow{0}+\overrightarrow{0}=4\overrightarrow{MO}\)

c. Đề bài câu này thật kì quặc, đề cho cạnh hình vuông bằng a nhưng lại yêu cầu tìm quỹ tích có tổng độ dài bằng 1 đơn vị.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=1\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=1\)

\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=1\)

\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=1\)

\(\Leftrightarrow3MG=1\)

\(\Leftrightarrow MG=\dfrac{1}{3}\)

Tập hợp M là đường tròn tâm G bán kính \(\dfrac{1}{3}\)

3 tháng 1 2016

chtt

28 tháng 1 2016

Bình Trần Thị ơi, bài này hay đóhihi