K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Gọi tọa độ điểm H(a;b)

Ta có:  A H → = a + 1 ; b − 1 ,   B H → = a ; b − 2 ,   B C → = 1 ; − 1 ,   A C → 2 ; 0

Do H là trực tâm tam giác ABC nên:

A C → . B H → = 0 B C → . A H → = 0 ⇒ 2. a + 0. b − 2 = 0 1. a + 1 − 1. b − 1 = 0 ⇒ a = 0 b = 2

Vậy H (0; 2).

Chọn A

4 tháng 1 2017

A B → = 3 ; 12 ,   A C → = 4 ; − 1 ⇒ ( A B )   ⃗ . ( A C )   ⃗ = 3 . 4 + 12 . ( - 1 ) = 0   ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B

6 tháng 10 2018

Ta có:

Suy ra tam giác ABC vuông tại A do đó trực tâm H trùng với A

Vậy H( -1 ; 3)

Chọn B.

11 tháng 9 2019

Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.

A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2

⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1

4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3

⇔ a = − 5 2 b = 9 2

Chọn B.

a: vecto AB=(1;1)

vecto AC=(2;6)

vecto BC=(1;5)

b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)

\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)

\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)

=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)

c: Tọa độ trung điểm của AB là:

x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5

Tọa độ trung điểm của AC là;

x=(1+3)/2=2 và y=(-1+5)/2=4/2=2

Tọa độ trung điểm của BC là:

x=(2+3)/2=2,5 và y=(0+5)/2=2,5

d: ABCD là hình bình hành

=>vecto AB=vecto DC

=>3-x=1 và 5-y=1

=>x=2 và y=4

NV
9 tháng 3 2021

Gọi C(x;y) \(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+2}{3}\\y_G=\dfrac{y-6}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+2}{3}\right)-\dfrac{y-6}{3}+1=0\)

\(\Leftrightarrow3x-y+15=0\Rightarrow y=3x+15\Rightarrow C\left(x;3x+15\right)\)

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(\Leftrightarrow3=\dfrac{1}{2}\left|-2\left(3x+19\right)-2\left(x-2\right)\right|\)

\(\Rightarrow x=...\)

20 tháng 1 2019

Do G là trọng tâm tam giác ABC nên tọa độ G:

x G = x A + ​ x B + ​ x C 3 = − 1 + ​ 5 + ​ 0 3 = 4 3 y G = y A + ​ y B + ​ y C 3 = ​ 1 + ​ ( − 3 ) + 2 3 = 0 ⇒ G 4 3 ;    0

Điểm G1 là điểm đối xứng của G qua trục Oy nên  G 1 ​   − 4 3 ;    0

Đáp án D