Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
a: Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
góc EHB=góc DHC
=>ΔHEB đồng dạng với ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
b: Xét ΔBAC có
BD,CE là đường cao
BD cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại F
Xét ΔBFH và ΔBDC có
góc BFH=góc BDC
góc FBH chung
=>ΔBFH đồng dạng với ΔBDC
=>BF/BD=BH/BC
=>BF*BC=BD*BH
Hình bạn tự vẽ nhé
a/ xét tam giác AEC và tam giác AFB ta có :
A là góc chung
góc AEC = góc AFB (=90 độ )
=> tam giác AEC ~ tam giác AFB (g.g)
b) vì tam giác AEC ~ tam giác AFB ( cmt)
=> AE/AF=AC/AB => AE*AB = AF*AC
c) xét tam giác BDH và tam giác BFC ta có :
góc B chung
góc BDH = góc BFC (=90 độ)
=> tam giác BDH ~ tam giác BFC (g.g)
=>BH/BC=BD/BF => BH*BF=BC*BD (1)
xét tam giác CHD và tam giác CBE ta có :
C là góc chung
góc CDH = góc CEB (=90 độ )
=> tam giác CHD ~ tam giác CBE (g.g)
=> CH/CB= CD/CE => CH*CE=CB*CD (2)
từ (1) và (2) => BH.BF +CH.CE= BC.BD+ CB.CD = BC ( BD +CD)= BC.BC= BC2
=> BH.BF+CH.CE=BC2 (đpcm)
d) xét tam giác AEH và tam giác AMD ta có :
A là góc chung
góc AEH = góc AMD (= 90 độ )
=> t/g AEH ~t/g AMD (g.g)=> AE/AM=AH/AD (3)
xét t/ g AFH và AND ta có :
A là góc chung
góc AFH = góc AND (=90 độ )
=> t/g AFH ~ t/g AND (g.g) => AF/AN=AH/AD (4)
từ (3) và (4) => AE/AM=AF/AN
=> EF // MN hay MN//EF ( định lý Ta - lét đảo )
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{DAB}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Suy ra: \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)