Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp
b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE
\(\Rightarrow OM\bot DE\)
CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)
CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)
mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)
\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE
\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng
c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)
\(\Rightarrow\) \(IK\parallel DE\)
a: Xét tứ giác AKIB có
góc AKB=góc AIB=90độ
=>AKIB là tứ giác nội tiếp
b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD
góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD
=>góc BHD=góc BDH
=>ΔBHD cân tại B