K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\text{#TNam}\)

`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC,`\(\widehat{B}=\widehat{C}\)

Xét Tam giác `AIB` và Tam giác `AIC` có:

`AB = AC (CMT)`

\(\widehat{B}=\widehat{C}\) `(CMT)`

`IB = IC (g``t)`

`=> \text {Tam giác AIB = Tam giác AIC (c-g-c)}`

Hnhu câu `b,` bạn ghi thiếu yêu cầu rồi nhé!

`c,` Xét Tam giác `AEI` và Tam giác `MEC` có:

`EA = EC (g``t)`

\(\widehat{AEI}=\widehat{MEC}\) `(\text {2 góc đối đỉnh})`

`EM = EI (g``t)`

`=> \text {Tam giác AEI = Tam giác MEC (c-g-c)}`

`->`\(\widehat{AIE}=\widehat{CME}\) `(\text {2 góc tương ứng})`

Mà `2` góc này nằm ở vị trí sole trong `-> \text {AI // CM}`

Vì Tam giác `ABI =` Tam giác `ACI (a)`

`->`\(\widehat{AIB}=\widehat{AIC}\) `(\text {2 góc tương ứng})`

Mà `2` góc này nằm ở vị trí kề bù 

`->`\(\widehat{AIB}+\widehat{AIC}=180^0\)

`->`\(\widehat{AIB}=\widehat{AIC}=\) `180/2=90^0`

`-> AI \bot BC`

Mà `\text {AI // CM} -> MC \bot BC`

loading...

 

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

b: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét tứ giác ABEC có

I là trung điểm của AE
I là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB//EC

31 tháng 12 2021

a: Xét ΔAIB và ΔAIC có 

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

13 tháng 2 2019

Toán của ai đấy

13 tháng 2 2019

thầy giao cho chị làm bài lớp 7 luôn đó

hehehe

22 tháng 12 2021

a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

a: Xét ΔADE có AD=AE

nên ΔADE cân tại A

Xét ΔABC có 

AD/AB=AE/AC

Do đó: DE//BC

b: Xét ΔAMB và ΔAMC có 

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

17 tháng 1 2022

Cảm ơn bạn nhiều.

2 tháng 5 2023

Tự kẻ hình nha

- Vì tam giác ABC vuông tại A (gt)
=> CA vuông góc với AB (tc)
=> tam gics ADC vuông tại A (tc)
- Xét tam giác vuống ABC và tam giác vuông ADC, có:
+ Chung AC
+ AB = AD ( A là trung điểm BD)
=> Tam giác vuông ABC = tam giác vuông ADC (2 cạnh góc vuông)

- Vì tam giác vuông ABC = tam giác vuông ADC (cmt)
=> CB = CD (2 cạnh tương ứng)
=> tam gics CBD cân (định nghĩa)

- Vì A là trung điểm BD (gt)
=> CA là trung tuyến tam giác CBD (dấu hiệu)
- Vì K là trung điểm BC (gt)
=> DK là trung tuyến tam gics CBD (dấu hiệu) 
Mà CA và DK cắt nhau tại M (gt)
=> M là trọng tâm tam giác CBD (tc)
=> MC = 2/3 CA (tc)
=> MC = 2MA (đpcm)

- Gọi d là đường trung trực của AC 
- Gọi N là giao điểm của AC và d 
- Vì d là đường trung trực của AC (cách gọi)
=> d vuông góc với AC 
    => góc QNC = 90o (tc)  1
=> AN = CN
- Vì tam giác ADC vuông tại A (cmt)
=> góc DAC = 90(tc)  2
Từ 1 và 2 ta có:
=> DA // QN (đồng vị)
- Xét tam giác vuông QNA và tam giác vuông QNC, có:
+ Chung QN 
+ AN = CN (cmt)
=> tam giác vuông QNA = tam giác vuông QNC (2 cạnh góc vuông)
  => góc AQN = góc CQN (2 góc tương ứng) 
  => QA = QC (2 cạnh tương ứng)
- Vì DA // QN (cmt)
=> góc DAQ = góc AQN (so le trong)
=> góc CQN = góc ADQ (đồng vị)
Mà góc AQN = góc CQN (cmt)
=> góc DAQ = góc ADQ 
=> tam giác QAD cân tại Q (dấu hiệu)
=> QA = QD (định nghĩa) 
Mà QA = QC (cmt)
=> QD = QC 
=> MQ là trung tuyến của DC 
Mà M là trọng tâm của tam giác CBD (cmt)
=> BQ là trung tuyến tam giác CBD (tc)
=> B, M, Q thằng hàng (đpcm)