K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

Hình bạn tự vẽ nhé 

a] Ta có  AM=BM = \(\frac{1}{2}\) AB 

              AN = CN = \(\frac{1}{2}\) AC 

 mà AB = AC [ vì tam giác ABC cân tại A ]

\(\Rightarrow\) AM = BM = AN = CN     [ * ]

Xét tam giác ABN và tam giác ACM có ;

             AN = AM [ theo * ]

             góc A chung 

             AB = AC [ vì tam giác ABC cân tại A ]

Do đó ; tam giác ABN = tam giác ACM [ c.g.c ]

b] Xét tam giác ANG và tam giác CNK có ;

              NG = NK [ gt ]

              góc ANG = góc CNK [ đối đỉnh ]

              AN = CN [ theo * ]

 Do đó ; tam giác ANG = tam giác CNK [ c.g.c ]

       \(\Rightarrow\)góc AGN = góc CKN [ góc tương ứng ]

  mà chúng ở vị trí so le trong 

\(\Rightarrow\) AG // CK 

c]Vì M , N lần lượt là trung điểm của AB , AC nên 

BN , CM lần lượt là trung tuyến của AC , AB 

mà G là giao điểm của BN , CM 

\(\Rightarrow\) G là trọng tâm của tam giác ABC 

\(\Rightarrow\) GN = \(\frac{1}{2}\) BG  [ 1 ]

Ta có ; NG = NK [ gt ]

  \(\Rightarrow\) NG = \(\frac{1}{2}\) GK [ 2 ]

Từ [ 1 ] và [ 2 ] suy ra ; BG = GK 

\(\Rightarrow\) G là trung điểm của BK 

d]Ta có định lí ; Trong một tam giác cân đường trung tuyến nối từ đỉnh cân vừa là đường trung trực vừa là đường cao , đường phân giác của tam giác đó [ định lí sgk toán lớp 7 tập 2 ]

\(\Rightarrow\) AG là đường cao của tam giác ABC 

\(\Rightarrow\) AG vuông góc với BC .

Chúc bạn học tốt , chọn k đúng cho mình nhé 

Nhớ kết bạn với mình đó

18 tháng 6 2020

k đúng cho mình nhé

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

a: Xét tứ giác BGCH có 

M là trung điểm của GH

M là trung điểm của BC

Do đó; BGCH là hình bình hành

SUy ra: BG//CH

b: Xét ΔBMK vuông tại M và ΔCMJ vuông tại M có

MB=MC

\(\widehat{MBK}=\widehat{MCJ}\)

Do đó: ΔBMK=ΔCMJ

Suy ra: BK=CJ

23 tháng 4 2018

b) Ta có: G là trọng tâm của ΔBAC(gt)

mà AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

nên \(AM=\dfrac{3}{2}\cdot AG\)(Định lí)

\(\Leftrightarrow AM=\dfrac{3}{2}\cdot4=6\left(cm\right)\)

Ta có: ΔABC cân tại A(cmt)

mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)

nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)

Ta có: M là trung điểm của BC(gt)

nên \(BM=CM=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=6^2+8^2=100\)

hay AB=10(cm)

Vậy: AM=6cm; AB=10cm

a) Xét ΔABC có:

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

AM là đường phân giác ứng với cạnh BC(Gt)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90Chứng minh HK // AB và KB = AH.Chứng minh ΔMAC cân.Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.Chứng minh rằng ΔAHB = ΔAHC.Gọi I là trung điểm...
Đọc tiếp

Bài 9: (3,5 điểm) Cho tam giác ABC vuông tại A, lấy điểm m là trung điểm của BC. Vẽ MH AC (H thuộc AC). Trên tia HM lấy điểm K sao cho MK = MH.
a) Chứng minh ΔMHC = ΔMKB rồi suy ra HKB= 90
Chứng minh HK // AB và KB = AH.
Chứng minh ΔMAC cân.
Gọi G là giao điểm của AM và BH. Chứng minh GB + GC > 3GA.
Bài 8: (3,5 điểm) Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H.
Chứng minh rằng ΔAHB = ΔAHC.
Gọi I là trung điểm của cạnh AH. Trên tia đối của tia IB, lấy điểm D sao cho IB = ID. Chứng minh IB = IC, từ đó suy ra AH + BD > AB + AC.
Trên cạnh CI, lấy điểm E sao cho CE 23 CI. Chứng minh ba điểm D, E, H thẳng hàn

Bài 5: Cho ΔABC cân tại A, A= 90. vẽ AH vuông góc với BC tại H.
a) Chứng minh: ΔABH = ΔACH
b) Cho biết AH = 4cm; BH = 3cm. Tính độ dài cạnh AB. 
c) Qua H, vẽ đường thẳng song song với AC cắt cạnh AB tại M. Gọi G là giao điểm của CM và AH. Chứng minh G là trọng tâm của ΔABC và tính độ dài cạnh AG.

(Vẽ hình giúp mk với nha mk cần gấp ạ)

0