K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM vuông góc DE

nên AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH=góc CAK

=>ΔAHB=ΔAKC

=>BH=KC

d: Gọi giao của BH và CK là O

góc OBC=góc HBD

góc OCB=góc KCE
mà góc HBD=góc KCE

nên góc OBC=góc OCB

=>OB=OC

=>O nằm trên trung trực của BC

=>A,M,O thẳng hàng

 

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

 

a: Xét ΔABD và ΔACE có

AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A

b: ΔABC cân tại A

mà AM là trung tuyến

nên AM vuông góc BC

ΔADE cân tại A

mà AM vuông góc DE

nên AM là phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH=góc CAK

=>ΔAHB=ΔAKC

=>BH=KC

29 tháng 7 2018

a) Vì tg ABC cân=> ^ABC = ^ACB mà 180-ABC=ABD và 180-ACB=ACE

=> ^ABD = ^ACE

TG ABD = TG ACE (c.g.c)

=> ABD=ACE => TG ADE cân(đpcm)

b) * CM được TG HBD = TG KCE (cạnh huyền- góc nhọn)

=> BH=CK (đpcm)

=> DH=KE

* Ta có: AD = AE (vì TG ADE cân)

DH=KE(CMT)

mà AD - DH = AH

     AE - KE = AK

=> AH = AK

và DH=KE ( CMT)

Do đó: HK là đường trung bình của TG ADE

=> HK // DE

c, ý b là BOC?

^HBD=^KCE (TG HBD= TG KCE )

=> ^CBO = ^BCO (đối đỉnh vs 2 góc = nhau)

=> TG OBC cân

26 tháng 1 2015

a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )

BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)

b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì. 

Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM

c) Xét 2 tam giác EKC và tam giác DHB vuông tại K  và H

Ta có: EC = DB

Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)

=> BH = CK 

 

31 tháng 3 2016

Bạn nguyen khoi nguyen ơi, ở câu b thì cho m là trung diểm bc, ko phaj de đâu

a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABD}=\widehat{ACE}\)

Xét ΔABD và ΔACE có 

AB=AC(ΔBAC cân tại A)

\(\widehat{ABD}=\widehat{ACE}\)(cmt)

BD=CE(gt)

Do đó: ΔABD=ΔACE(c-g-c)

Suy ra: AD=AE(Hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là phân giác của góc EAD

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

d: Gọi giao điểm của BH và CK là O

Ta có: góc HDB=góc KEC

=>90 độ-góc HDB=90 độ-góc KEC

=>góc OBC=góc OCB

=>OB=OC

hay O nằm trên đường trung trực của BC

=>A,M,O thẳng hàng

=>AM,BH,CK đồng quy

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{ABD}=\widehat{ACE}\)

BD=CE

Do đó: ΔABD=ΔACE

Suy ra: AD=AE
hay ΔADE cân tại A

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

=>AM⊥DE

Ta có: ΔADE cân tại A

mà AM là đường cao

nên AM là tia phân giác của góc DAE

c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: BH=CK

13 tháng 2 2022

bạn ơi mình chưa học chứng minh bằng đường cao