Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu c dư nha tìm điều kiện của tam giác ABC để tứ giác BNCH là hình vuông
nha giúp với
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Bài 2:
a: Xet ΔABC có AD/AB=AF/AC
nen DF//BC và DF=1/2BC
=>BDFC là hình thang
mà góc B=góc C
nên BDFC là hình thang cân
b Xet ΔABC có
CE/CB=CF/CA
nên EF//AB và EF=AB/2
=>EF//AD và EF=AD
=>ADEF là hình bình hành
mà AD=AF
nen ADEF là hình thoi
c: Để ADEF là hình vuông thì góc BAC=90 độ
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
Tự vẽ hình ...
a, Xét tứ giác ANCM có:
AI = CIMI = NI ( đối xứng)
Mà: AC cắt MN tai J
Nên: tứ giác ANCM là hình bình hành
Xét hình bình hành ANCM cógóc AMC = 900
=> hình bình hành ANCM là hình chữ nhật
b, Xét: Tam giác ABC cân tại A có: AM là đường trung tuyến
=> AM là đường cao
\(\widehat{AMB}=\widehat{AMC}=90^0\)
Xét tam giác AMB có góc AMB = 900
MK là đường trung tuyến ứng vs cạnh huyền AB
\(\Rightarrow MK=\frac{1}{2}AB\)(1)
Mà: K là trung điểm của AB
\(\Rightarrow KA=KB=\frac{1}{2}AB\)(2)
Từ (1), (2)=> MK = AK = BK (3)
Chứng minh tương tự ta có :
\(MI=AI=CI=\frac{1}{2}AC\)(4)
Mà: AB = AC( tam giác ABC cân) (5)
Từ (3), (4),(5)
=> MI = AI = CI = MK = AK = BK
Xét tứ giác AKMI có:AK = KM = MI = AI
=> tứ giác AKMI là hình thoi
c, Ta có : AMCN là HCN
Để AMON là hình vuông thì phải cần thêm điều kiện là MI tia phân giác của góc M
hc tốt ##
a) Giao điểm của AH và BC là E. Dễ thấy: \(\Delta\)BHM = \(\Delta\)CKM (c.g.c) => ^HBM = ^KCM
=> ^HBC = ^KCB. Do H đối xứng với I qua BC => ^HBC = ^IBC => ^KCB = ^IBC (1)
Xét \(\Delta\)HIK: E là trung điểm IH; M là trung điểm của HK => EK là đường trung bình \(\Delta\)HIK
=> EM // IK hay IK // BC => Tứ giác BIKC là hình thang (2)
Từ (1) & (2) => Tứ giác BIKC là hình thang cân (đpcm).
b) Dễ c/m tứ giác BHCK là hình bình hành (Do có tâm đối xứng) => HC // BK
Hay HC // GK => Tứ giác GHCK là hình thang
Để tứ giác GHCK là hình thang cân thì ^GHC = ^KCH
<=> ^HAC + ^HCA = ^HCB + ^HBC <=> ^HCA = ^HCB ( Vì ^HAC = ^HBC, cùng phụ ^ACB)
<=> CH là phân giác ^ACB. Mà CH cũng là đường cao của \(\Delta\)ABC => \(\Delta\)ABC cân tại C
Vậy khi \(\Delta\)ABC cân tại C thì tứ giác GHCK là hình thang cân.