Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AN=AC/2
AM=AB/2
mà AB=AC
nên AM=AN
b: Xét tứ giác AGCK có
N là trung điểm chung của CA và GK
=>AGCK là hình bình hành
=>AG//CK
c: BG=2GN
mà GN=1/2GK
nen BG=GK
ta co :am=\(\frac{1}{2}\)ac(vi m la trung diem cua ac)
an=\(\frac{1}{2}\)ab(vi n la trung diem cua ab)
ma ab=ac suy ra am=an
b)xet tam giac ang va tam giac cnk co
an=bn
goc knb= goc ang
kn=ng
suy ra tam giac ang=tam giac cnk c,g,c
c)suy ra goc bkn=goc agn
ma s goc nay o vi tri so le trong
suy ra ag songsong kb
d)vi m la trung diem cua ac suy ra bm la trung diem cua ac suy ra bg=\(\frac{2}{3}\)gm
vi n la trung diem cua ab suy ra cn la trung diem cua ab
suy ra cg=\(\frac{2}{3}\)cn
ma gn=nk suy ra cg =gk
suy ra gb=kg
y cuoi dang suy nghi nha ban
a)xét 2 tam giác vuông ABH và tam giác ACH có:
AB=AC(GT)
góc ABH=góc ACH(GT)
\(\Rightarrow\) tam giácABH = tam giác ACH(cạnh huyền-góc nhọn)
b)xét 2 tam giác ANG và tam giác CNK có:
CN=AN(GT)
góc KNC=góc ANG(2 góc đối đỉnh)
GN=KN(GT)
\(\Rightarrow\)tam giác ANG=tam giác CNK(c-g-c)
\(\Rightarrow\)Góc GAN=góc KCN
Vì góc GAN=góc KCN,mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)AH//CK
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔANB và ΔAMC có
AN=AM(cmt)
\(\widehat{BAN}\) chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: \(\widehat{ABN}=\widehat{ACM}\)(hai góc tương ứng)
hay \(\widehat{MBG}=\widehat{NCG}\)(3)
Xét ΔMBG có \(\widehat{MBG}+\widehat{MGB}+\widehat{BMG}=180^0\)(Định lí tổng ba góc trong một tam giác)(1)
Xét ΔNCG có \(\widehat{NCG}+\widehat{NGC}+\widehat{GNC}=180^0\)(Định lí tổng ba góc trong một tam giác)(2)
Từ (1), (2) và (3) suy ra \(\widehat{MGB}+\widehat{BMG}=\widehat{NGC}+\widehat{CNG}\)
mà \(\widehat{MGB}=\widehat{NGC}\)(hai góc đối đỉnh)
nên \(\widehat{BMG}=\widehat{CNG}\)
Xét ΔBMG và ΔCNG có
\(\widehat{BMG}=\widehat{CNG}\)(cmt)
BM=CN(cmt)
\(\widehat{MBG}=\widehat{NCG}\)(cmt)
Do đó: ΔBMG=ΔCNG(g-c-g)
Suy ra: GM=GN(Hai cạnh tương ứng)