K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Sorry, bạn tự vẽ hình nha! 

a.

Tam giác ABC cân tại A có:

\(B=C=\frac{180-A}{2}=\frac{180-80}{2}=\frac{100}{2}=50\)

b.

Xét tam giác ABD và tam giác ACE có:

AB = AC (tam giác ABC cân tại A)

B = C (tam giác ABC cân tại A)

BD = CE (gt)

=> Tam giác ABD = Tam giác ACE (c.g.c)

=> AD = AE (2 cạnh tương ứng)

=> Tam giác ADE cân tại A

c.

Xét tam giác HAD vuông tại H và tam giác KAE vuông tại K có:

AD = AE (tam giác ADE cân tại A)

A1 = A2 (tam giác ABD = tam giác ACE)

=> Tam giác HAD = Tam giác KAE (cạnh huyền - góc nhọn)

=> AH = AK (2 cạnh tương ứng)

24 tháng 4 2019

a) tam giác abc có a+b+c=180'
               hay  80+b+c=180

                       b+c=100
          mà b=c(tam giác abc cân tại a)

             => b=c=50

b)Xét tam giác abd và aec có

ab=ac(gt)

góc b=góc c(gt)

bd=ec(gt)

do đó,abd=ace  (c-g-c)

=> ad=ae (2 cạnh tương ứng)

=>tam giác ade cân tại a
 

a: Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc B=góc C

=>ΔBHD=ΔCKE

=>HD=EK

b: Xét ΔAHD vuông tại H và ΔAKE vuông tại K có

AH=AK

HD=EK

=>ΔAHD=ΔAKE

=>AD=AE

25 tháng 3 2023

cũng đúng nhưng câu c đâu ạ

5 tháng 4 2021

a) Xét ∆ADB và ∆AEC có:

          AB=AC (gt)
       góc ABD= góc ACE (gt)

         BD=CE(gt)

=>∆ADB=∆AEC(c.g.c0

=>AD=AC (2 cạnh tương ứng)

=>∆ADE là ∆cân tại A

b)Xét ∆BHD và ∆CKE có:

          góc BHD=góc EHC=90

          BD=CE(gt)
          góc B=góc C(gt)

=>∆BHD=∆CKE(cạnh huyền góc nhọn)

=>DH=EK(2 cạnh tương ứng)(đpcm)

c)∆BHD=∆CKE(cmt) =>góc HDB =góc KEC (2cạnh tương ứng)

mà ∠HDB=∠EDO( đối đỉnh), ∠KEC=∠DEO(đối đỉnh)

=>∠EDO=∠DEO =>∆ODE cân tại O (đpcm)
 

         

5 tháng 4 2021

mị xong đầu tiên    

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
30 tháng 4 2016

Bài 4: a) Xét ABE vàHBE có:
BE chung
ABE= EBH (vì BE là phân giác)
=> ABE=HBE (cạnh huyền- góc nhọn)
b, Vì ABE=HBE(cmt)
=> BA = BH và EA = EH 
=> điểm B, E cách đều 2 mút của đoạn thẳng AH 
=>BE là đường trung trực của đoạn thẳng AH
c, Vì AC vuông góc BK => EAK = \(90\) độ
EH vuông góc BC => EHC = 90 độ
Xét AEK vàHEC có:
EAK = EHC (= 90độ)(cmt)
AE = EH (cmt)
AEK = HEC (đối đỉnh)
=> AEK HEC (g.c.g)
=> EK = EC (2 cạnh tương ứng)
Xét HEC vuông tại H (vì EHC = 90 độ )
có EH < EC(cạnh huyền lớn hơn cạnh góc vuông)
Mà AE = EH (cmt) => AE < EC
 

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

5

Bạn tự vẽ hình nha!!!

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

30 tháng 4 2016

3a.

Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:

ABD = EBD (BD là tia phân giác của ABE)

BD là cạnh chung

=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)

=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE

=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE

=> BD là đường trung trực của AE.

3b.

Xét tam giác AFD và tam giác ECD có:

FAD = CED ( = 90 )

AD = ED (tam giác ABD = tam giác EBD)

ADF = EDC (2 góc đối đỉnh)

=> Tam giác ADF = Tam giác EDC (g.c.g)

=> DF = DC (2 cạnh tương ứng)

3c.

Tam giác ADF vuông tại A có:

AD < FD (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)

mà FD = CD (theo câu b)

=> AD < CD.

22 tháng 2 2020

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △ABD và △ACE

Có: AB = AC (cmt)

    ABD = ACE (cmt)

       BD = CE(gt)

=> △ABD = △ACE (c.g.c)

b, Xét △AHD vuông tại H và △AIE vuông tại I

Có: AD = AE (△ABD = △ACE)

    HAD = IAE (△ABD = △ACE)

=>  △AHD = △AIE (ch-gn)

=> HD = IE (2 cạnh tương ứng)

c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2       (1)

Vì △ABC cân tại A => ABC = (180o - BAC) : 2         (2)

Từ (1) và (2)  => AHI = ABC

Mà 2 góc này nằm ở vị trí đồng vị 

=> HI // BC (dhnb)

d, Gọi { O } = HD ∩ EI

Xét △BAM và △CAM

Có: AB = AC (cmt)

      MB = MC (gt)

   AM là cạnh chung

=> △BAM = △CAM (c.c.c)

=> BAM = CAM (2 góc tương ứng)

Mà AM nằm giữa AB, AC 

=> AM là phân giác của BAC

Xét △HAO vuông tại H và △IAO vuông tại I

Có: AH = AI (cmt) 

      AO là cạnh chung

=> △HAO = △IAO (ch-cgv)

=> HAO = IAO (2 góc tương ứng)

=> AO là phân giác của BAC

Mà AM là phân giác của BAC

=> AO ≡ AM

=> 3 điểm A, M, O thẳng hàng

=> Ba đường thẳng AM, DH, EI cắt nhau tại một điểm. 

4 tháng 3 2022

gọi O là j thế anh