K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

bạn ơi câu này phải là trên tia đối của BA và CA lấy 2 điểm D và E sao cho BD=CE

a) Vì ∆ABC cân tại A 

=> ABC = \(\frac{180°-BAC}{2}\)

Vì ∆ABC cân tại A 

=> AB = AC 

Mà BD = CE 

=> AB + BD = AC + CE 

Hay AD = AE 

=> ∆ADE cân tại A 

=> ADE = \(\frac{180°-BAC}{2}\)

=> ADE = ABC 

Mà 2 góc này ở vị trí đồng vị 

=> BC //DE 

b) Vì BC //DE 

=> BCED là hình thang 

Vì ∆ADE cân tại A=> ADE = AED 

=> BCED là hình thang cân 

=> BD = CE

=> BDE = CED 

Vì BC //DE 

=> MN//DE 

=> NMD = MDE = 90° 

=> MNE = NED = 90°

=> MDE = NED 

Mà MDE = MDB + BDE 

NED = NEC + CED=

=> NEC = MDB 

Xét ∆ vuông BMD và ∆ vuông CNE ta có : 

BD = CE 

NEC = MDB (cmt)

=> ∆BMD = ∆CNE ( cgv-gn)

 c) Ta thấy ADB là góc ngoài ∆ABC tại đỉnh B

=> BAC + ABC = AMB 

Ta thấy : ANC là góc ngoài ∆ABC tại đỉnh C

=> BAC + ACB = ANC 

Mà ABC = ACB ( ∆ABC cân tại A)

=> AMB = ANC 

=> ∆AMN cân tại A 

15 tháng 2 2019

chị tự kẻ hình : 

a, AB = AC (gt) và BD = CE (gt)

AB + BD = AD do B nằm giữa A và D

AC + CE = AE do C nằm giữa E và A 

=> AD = AE

=> tam giác ADE cân tại A (đn)

=> góc ADE = (180 - góc A) : 2 (tc)

tam giác ABC cân tại A (gt) => góc ABC = (180 - góc A) : 2 (tc)

=> góc ADE = góc ABC mà 2 góc này ở vị trí đồng vị

=> DE // BC (dh)

b, tam giác ABC cân tại A (gt) => góc ABC = góc ACB (tc)

góc ABC = góc MBD (đối đỉnh)

góc ACB = góc NCE (đối đỉnh)

=> góc MBD = góc NCE 

xét tam giác MBD và tam giác NCE có : BD = CE (gt)

góc M = góc N = 90 do DM; CN _|_ BC (gt)

=>  tam giác MBD = tam giác NCE (ch - gn)

=> DM = EN (đn)

c,  tam giác MBD = tam giác NCE (câu b) 

=> MB = CN (đn)

MB  + BC = MC

CN + BC = BN

=> MC = BN 

xét tam giác ACM và tam giác ABN có : AB = AC (gt)

góc ABC = góc ACB (câu b)

=> tam giác ACM =  tam giác ABN (c - g - c)

=> AM = AN (đn)

=> tam giác AMN cân tại A (đn)

15 tháng 2 2019

A B C D E M N I

Cm: Ta có: AB + BD = AD

             AC + CE = AE

Và AB = AC (gt); BD = CE (gt)

=> AD = AE 

=> t/giác ADE là t/giác cân tại D

=> góc D = góc E = \(\frac{180^0-\widehat{A}}{2}\) (1)

Ta có: AB = AC

=> t/giác ABC cân tại A

=>góc ABC = góc ACB =  \(\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra góc ABC = góc ADE

Mà góc ABC và  góc ADE ở vị trí đồng vị

=> DE // BC (Đpcm)

b) Ta có: góc ABC = góc MBD (đối đỉnh)

               góc ACB = gcs NCE (đối đỉnh)

Và góc ABC = góc ACB (Vì t/giác ABC cân tại A)

=> góc ABC = góc ACB = góc MBD = góc ECN

Xét t/giác BMD và t/giác CNE

có góc M = góc N = 900 (gt)

  BD = CE (Gt)

 góc MBD = góc ECN (cmt)

=> t/giác BMD = t/giác CNE (ch - gn)

=> DM = EN (hai cạnh tương ứng)

c) Ta có: góc ABC + góc ABM = 1800

             góc ACB + góc ACN = 1800

Và góc ABC = góc ACB ( vì t/giác ABC cân tại A)

=> góc ABM = góc ACN 

Ta lại có: t/giác BDM = t/giác CNE (cmt)

=> BM = CN (hai cạnh tương ứng)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  góc ABM = góc ACN (cmt)

 BM = CN (cmt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (hai cạnh tương ứng)

=> t/giác AMN là t/giác cân tại A

d) Tự lm

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

3 tháng 4 2020

Hình tự kẻ nha

a)Xét 2 tam giác vuông ABH và ACH có

 Góc AHB = góc AHC (=90°)

 AB= AC ( tam giác ABC cân tại A)

 Góc ABC = góc ACB (tam giác ABC cân tại A)

=>2 tam giác vuông ABH=ACH (cạnh huyền -góc nhọn)

b)Tam giác ABC cân =>góc ABC=gócACB

=>gócABM=gócACN

Xét 2 tam giác ABM và ACN

AB=AC ( tam giác ABC cân tại A)

Góc ABM=góc ACN (cmt)

BM=CN(gt)

=> tam giác ABM=tam giác ACN

=>AM=AN

Do đó tam giác AMN cân tại A

c) Phần này hình như sai đề

3 tháng 4 2020

A B C M N H E F K 1 2 1 1 2 3 3 2

a) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

    \(\widehat{H_1}=\widehat{H_2}=90^0\)(gt)

   \(\widehat{B_1}=\widehat{C_1}\) (gt)

=> t/giác ABH = t/giác ACH (ch - gn)

b) Ta có: \(\widehat{B_1}+\widehat{ABM}=180^0\)(kề bù)

      \(\widehat{C_1}+\widehat{ACN}=180^0\) (kề bù)

Mà \(\widehat{B_1}=\widehat{C_1}\) (gt) => \(\widehat{ABM}=\widehat{ACN}\)

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

  \(\widehat{ABM}=\widehat{ACN}\) (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

=> AM = AN (2 cạnh t/ứng)

=> t/giác AMN cân

c) Ta có: t/giác  MEB vuông tại A => \(\widehat{M}+\widehat{B_2}=90^0\)

    t/giác FCN vuông tại F => \(\widehat{C_2}+\widehat{N}=90^0\)
Mà \(\widehat{M}=\widehat{N}\)(Vì t/giác AMN cân tại A) => \(\widehat{B_2}=\widehat{C_2}\) (1)

Ta lại có: \(\widehat{B_2}=\widehat{B_3}\) (Đối đỉnh); \(\widehat{C_2}=\widehat{C_3}\)(đối đỉnh)       (2)

Từ (1) và (2) => \(\widehat{B_3}=\widehat{C_3}\) => t/giác BKC cân tại K

                      có KH là đường cao

  => KH cũng là đường trung trực của cạnh BC (t/c của t/giác cân) (3)

(đoạn này chưa học có thể xét t/giác KBH và t/giác KCH =>  BH = CH => KH là đường trung trực)

t/giác ABH = t/giác ACH (cm câu a) =>  BH = CH 

=> AH là đường trung tuyến

mà AH cũng là đường cao 

=> AH là đường trung trực của cạnh BC (4)

Do A \(\ne\)K (5)

Từ (3); (4); (5) => A, H, K thẳng hàng

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn