K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

K A B C H I

a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)

=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.

b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C

Lại có I nằm giữa AC => K nằm giữa A và C

16 tháng 8 2016

a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)

b) \(\Delta ABC\) cân tại điểm A.

\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn

=> A nằm trên mặt phẳng chứa A bờ BC.

\(\Rightarrow\Delta AHC\approx\Delta BKC\)

\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)

\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)

Vậy K nằm giữa A và C

9 tháng 11 2019

A B H I K

Xét △ABC cân ở A có AH là đường cao

⇒AH là đường trung tuyến

⇒H là trung điểm của BC

⇒HB=HC=\(\frac{1}{2}\)BC=\(\frac{1}{2}.12=6\)(cm)

ADHT về cạnh và đường cao vào △AHC vuông ở C đường cao HI có

HC2=CI.AC

⇒62=CI.9

⇒CI=4(cm)

Vậy CI=4cm

AD tỉ số lượng giác vào △AHC vuông tại C có

sinHAC=\(\frac{HC}{AC}=\frac{6}{9}\)

\(\widehat{HAC}\approx42^o\)

Mà △ABC cân ở A có AH là đường cao

⇒AH là phân giác của \(\widehat{A}\)

\(2\widehat{HAC}=\widehat{A}\)

\(\widehat{A}\)=84o

AD tỉ số lượng giác vào △ABK vuông ở K có

AK=AB.cosA

=9.cos 84o

\(\approx\)1(cm)

Ta có △ABC cân ở A

\(\widehat{C}\)=\(\frac{180^o-84^o}{2}\)=48o

AD tỉ số lượng giác vào △BCK vuông ở K có

KC=BC.cosC

=12.cosC

\(\approx\)8(cm)

Ta có AK là đường cao của △ABC

⇒K∈AC

Lại có AK+KC=1+8=9=AC

⇒K nằm giữa A và C

9 tháng 11 2019

bổ sung điểm C zô hình nha!!!

a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

b: Xét tứ giác AMHN có 

\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

Suy ra: AH=NM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=6(cm)

mà AH=NM

nên MN=6cm