K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2018

Do DE // BC

\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{AD}{AB}\)(Hệ quả Ta lét)

Mà AD=BM (gt)

Suy ra : \(\frac{AD}{AB}\)=\(\frac{BM}{AB}\)

\(\Rightarrow\)\(\frac{DE}{BC}\)=\(\frac{BM}{AB}\)

\(\Rightarrow\)DE=\(\frac{BC.BM}{AB}\)

Xét \(\Delta ABC\)có MN//BC

\(\frac{MN}{BC}\)=\(\frac{AM}{AB}\)(Hệ quả Talét)

\(\Rightarrow\)MN=\(\frac{BC.AM}{AB}\)

Suy ra DE+MN=\(\frac{BC.BM}{AB}\)\(\frac{BC.AM}{AB}\)

\(\Rightarrow\)DE+MN=\(\frac{BC.AB}{AB}\)= BC

Mà BC là đường cố định không đổi

\(\Rightarrow\)DE+MN không đổi

20 tháng 3 2018

tớ nghĩ bài này bn giải sai rùi

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Lời giải:

a) Áp dụng định lý Talet cho:

Tam giác $CFD$ có $AM\parallel FD$:

$\frac{DF}{AM}=\frac{CD}{CM}(1)$

Tam giác $ABM$ có $ED\parallel AM$:

$\frac{ED}{AM}=\frac{BD}{BM}(2)$

Lấy $(1)+(2)\Rightarrow \frac{DE+DF}{AM}=\frac{CD}{BC:2}+\frac{BD}{BC:2}=\frac{BC}{BC:2}=2$

$\Rightarrow DE+DF=2AM$ 

Vì $AM$ không đổi khi $D$ di động nên $DE+DF$ không đổi khi $D$ di động

b) Dễ thấy $KADM$ là hình bình hành do có các cặp cạnh đối song song. Do đó $KA=DM$

Áp dụng định lý Talet cho trường hợp $AK\parallel BD$:

$\frac{KE}{ED}=\frac{KA}{BD}=\frac{DM}{BD}(3)$

Lấy $(1):(2)$ suy ra $\frac{DF}{ED}=\frac{CD}{BD}$

$\Rightarrow \frac{EF}{ED}=\frac{CD}{BD}-1=\frac{CD-BD}{BD}=\frac{CM+DM-(BM-DM)}{BD}=\frac{2DM}{BD}(4)$

Từ $(3);(4)\Rightarrow \frac{2KE}{ED}=\frac{EF}{ED}$

$\Rightarrow 2KE=EF\Rightarrow FK=EK$ hay $K$ là trung điểm $EF$

 

 

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Hình vẽ:
undefined

24 tháng 2 2018

tham khảo tại đây

Câu hỏi của Hồ Thu Giang - Toán lớp 7 - Học toán với OnlineMath

1: Xét ΔAEN có 

D là trung điểm của AE

DM//EN

Do đó: M là trung điểm của AN

2: Xét hình thang BDMC có 

E là trung điểm của BD

EN//BC//DM

Do đó: N là trung điểm của MC

Suy ra: NM=NC

mà NM=AM

nên AM=MN=NC

3: Xét hình thang DMCB có 

E là trung điểm của BD

N là trung điểm của MC
Do đó: EN là đường trung bình của hình thang DMCB

Suy ra: \(EN=\dfrac{DM+BC}{2}\)

hay \(DM+BC=2\cdot EN\)