Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AC^2+AB^2=4,5^2+6^2=56,25\)
\(BC^2=7,5^2=56,25\)
suy ra: \(AC^2+AB^2=BC^2\)
hay tam giác ABC vuông tại A
Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\)
\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=3,6\)
b) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BH=\frac{AB^2}{BC}=4,8\)
\(\Rightarrow\)\(HC=BC-BH=7,5-4,8=2,7\)
a: Xét ΔABC có \(BC^2=AC^2+AB^2\)
nên ΔABC vuông tại A
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot7.5=4.5\cdot6=27\)
hay AH=3,6(cm)
b:
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}BH\cdot BC=AB^2\\CH\cdot BC=AC^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=4,8\left(cm\right)\\CH=2,7\left(cm\right)\end{matrix}\right.\)
có AB2+AC2=4,52+62=56,25=7,52
tam giác abc vuông tại a
=> AH.BC=AB.AC
AH.7,5=4,5.6
AH.7,5=27
AH= 3,6
Ý bạn là giả thiết ko cho ABC là tam giác vuông chứ gì, bạn phải tự cm: Ta có: AC2+AB2=56,25=BC2 <=> Tam giác ABC vuông tại A.
=> AH=AB.AC/BC=3,6 ; BH=AB2/BC=4,8 ; CH=BC-BH=2,7
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=3,6(cm)
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔBAC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{4\cdot5\cdot6}{7.5}=3.6\left(cm\right)\)
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{6^2}{7.5}=4.8\left(cm\right)\\CH=\dfrac{4.5^2}{7.5}=2.7\left(cm\right)\end{matrix}\right.\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)
và \(BC=12,5\left(cm\right)\)
\(b,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)
Ta có:
A B 2 = 6 2 = 36 A C 2 = 4 , 52 = 20 , 25 B C 2 = 7 , 52 = 56 , 25
Vì A B 2 + A C 2 = 36 + 20,25 = 56,25 = B C 2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)
Kẻ AH ⊥ BC
Ta có: AH.BC = AB.AC
Ta có: AB2 + AC2 = 62 + 4,52 = 7,52 = BC2
nên tam giác ABC vuông tại A. (đpcm)
=> ∠B = 37o
=> ∠C = 90o - ∠B = 90o - 37o = 53o
Mặt khác trong tam giác ABC vuông tại A, ta có:
=> AH = 3,6 cm
a, AH = 3,6cm
b, BH = 4,8cm, CH = 2,7cm