Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét ΔBDA và ΔBCA có:
AB là cạnh chung
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AD=AC(gt)
\(\Rightarrow\Delta BDA=\Delta BCA\)(c-g-c)
\(\Rightarrow BD=BC\)(2 cạnh tương ứng)
\(\Rightarrow\Delta BCD\) cân tại B(đ.p.ch/m)
vì E là trung điểm của BD
\(\Rightarrow CE\) là đường trung tuyến
vì AD=AC \(\Rightarrow\)AB là đường trung tuyến
Do đó O là trọng tâm của ΔBCD
\(\Rightarrow OA=\dfrac{1}{3}AB\)
Mà AB=a \(\Rightarrow OA=\dfrac{1}{3}a\)
a/ ΔABC có: \(AB^2+AC^2=BC^2\) (vì 32 + 42 = 52)
=> ΔABC vuông tại A
b) Ta có: \(\widehat{BAC}+\widehat{BAD}=180^0\) (kề bù)
=> \(\widehat{BAD}=180^0-\widehat{BAC}=180^0-90^0=90^0\)
Xét ΔABC và ΔABD ta có:
AD = AC (GT)
\(\widehat{BAC}=\widehat{BAD}\left(=90^0\right)\)
AB: cạnh chung
=> ΔABC = ΔABD (c - g - c)
=> BC = BD (2 cạnh tương ứng)
=> ΔBCD cân tại B
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Vậy: AC=12cm