K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔIAB và ΔICD có 

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔIAB=ΔICD(c-g-c)

b) Ta có: ΔIAB=ΔICD(cmt)

nên AB=CD(hai cạnh tương ứng)

mà AB<BC(gt)

nên CD<BC

Xét ΔCBD có CD<BC(cmt)

mà góc đối diện với cạnh CD là \(\widehat{CBD}\)

và góc đối diện với cạnh BC là \(\widehat{BDC}\)

nên \(\widehat{CBD}< \widehat{BDC}\)

\(\Leftrightarrow\widehat{IBC}< \widehat{IDC}\)

mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIDC=ΔIBA)

nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)

a) Xét ΔIAB và ΔICD có 

IA=IC(I là trung điểm của AC)

\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)

IB=ID(gt)

Do đó: ΔIAB=ΔICD(c-g-c)

b) Ta có: ΔIAB=ΔICD(cmt)

nên AB=CD(hai cạnh tương ứng)

mà AB<BC(gt)

nên CD<BC

Xét ΔBCD có CD<BC(cmt)

mà góc đối diện với cạnh CD là góc DBC

và góc đối diện với cạnh BC là góc BDC

nên \(\widehat{DBC}< \widehat{BDC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)

hay \(\widehat{IDC}>\widehat{IBC}\)

mà \(\widehat{IDC}=\widehat{IBA}\)(ΔIAB=ΔICD)

nên \(\widehat{IBA}>\widehat{IBC}\)(đpcm)

a: Xét ΔiAB và ΔICD có

IA=IC

góc AIB=góc CID

IB=ID

=>ΔIAB=ΔICD

b: Xét ΔBAC có

BI,AM là trung tuyến

BI cắt AM tại G

=>G là trọng tâm

=>BG=2/3BI=2/3ID

c: Xét ΔDAC có

DI,AN là trung tuyến

DI cắt AN tại K

=>K là trọng tâm

=>DK=2/3DI=2/3*1/2*DB=1/3DB

BG=2/3BI

=>BG=2/3*1/2BD=1/3BD

BG+GK+KD=BD

=>GK=1/3BD=DK=BG

30 tháng 1 2022

5. ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)     \(a.b=c.d\)

\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)

Mà a+b = c+ d; ab = cd

=> đfcm

 

Bài 4: 

a: Ta có: I nằm trên đường trung trực của AD

nên IA=ID

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

\(\widehat{AIB}=\widehat{DIC}\)

IB=IC

Do đó: ΔIAB=ΔIDC

a: Xét ΔABD có

AI vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

góc HAI=góc KAI

=>ΔAHI=ΔAKI

=>HI=KI

c: HI=KI

KI<ID

=>HI<ID

a: Sửa đề; IA=IC

Ta có: I nằm trên đường trung trực của AC

nên IA=IC

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

IB=IC

AB=DC

Do đó: ΔIAB=ΔIDC

27 tháng 1 2022

a: Sửa đề; IA=IC

Ta có: I nằm trên đường trung trực của AC

nên IA=IC

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

IB=IC

AB=DC

Do đó: ΔIAB=ΔIDC

a: Xét ΔIAB và ΔICD có

IA=IC

góc AIB=góc CID

IB=ID

Do đo: ΔIAB=ΔICD

b: Ta có: ΔIAB=ΔICD

nên \(\widehat{IBA}=\widehat{IDC}\)

mà \(\widehat{IDC}>\widehat{IBC}\)

nên \(\widehat{IBA}>\widehat{IBC}\)

c: AB+BC=CD+BC>BD>2BI

nên \(BI< \dfrac{AB+BC}{2}\)