K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề bài yêu cầu gì?

8 tháng 11 2021

Với giá trị nguyên nào của a thì x là một số nguyên

\(\Leftrightarrow a\in\left\{1;-1;11;-11\right\}\)

8 tháng 11 2021

Xin cách giải chi tiết được không bạn

10 tháng 9 2020

a) để x là 1 số hữu tỉ 

\(\Rightarrow5⋮a-1\)

\(\Leftrightarrow a-1=5\Leftrightarrow a=6\)

Với a = 6 thì x là một số hữu tỉ 

b) để x là một số hữu tỉ dương

\(\Rightarrow\frac{5}{a-1}>0\Leftrightarrow\orbr{\begin{cases}5>0\\a-1>0\end{cases}\Leftrightarrow a>1}\)

Với a>1 thì x là số hữu tỉ dương

c) để x là một số hữu tỉ âm

\(\Rightarrow\frac{5}{a-1}< 0\Leftrightarrow\orbr{\begin{cases}5< 0\left(l\right)\\a-1< 0\end{cases}\Leftrightarrow a< 1}\)

Với a<1 thì x là số hữu tỉ âm

10 tháng 9 2020

\(x=\frac{5}{a-1}\left(a\inℤ\right)\)

a) Để x là một số hữu tỉ thì \(a-1\ne0\Rightarrow a\ne1\)

b) Để x là một số hữu tỉ dương thì \(\frac{5}{a-1}>0\)

=> a - 1 > 0

=> a > 1

c) Để x là một số hữu tỉ âm thì \(\frac{5}{a-1}< 0\)

=> a - 1 < 0

=> a < 1

NV
2 tháng 1 2022

Đề bài sai

Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)

Khi đó  \(x< y\) nhưng \(z< y\)

2 tháng 1 2022

\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)

\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)

                \(b\left(a+c\right)=ba+bc\left(3\right)\)

\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)

\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)

\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

\(\Rightarrow x< y< z\)

x=\(\frac{a+11}{a}=1+\frac{11}{a}\)

Để \(x\in z\)thì \(a\inƯ\left(11\right)=\left(-11;-1;1;11\right)\)

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

20 tháng 7 2017

3a)Vì A là số nguyên

=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)

\(\text{3 . (n - 4)}⋮n-4\)

=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

(Vì n là số nguyên => n - 4 là 1 số nguyên)

=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)

Ta có bảng sau:

n -17 -3 1 3 5 9 11 25
3n + 9 -42 0 12 18 24 36 42 84
n - 4 -21 -7 -3 -1 1 3 7 21
\(A=\dfrac{3n+9}{n-4}\) 2 0 -4 -18 24 12 6 4

Vậy.....

b)Vì B là số nguyên

=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)

\(\text{2 ( n + 5)}⋮n+5\)

=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)

(Vì n là số nguyên=> n + 5 là số nguyên)

=> \(n\in\left\{-16;-6;-4;6\right\}\)

Ta có bảng sau:

n -16 -6 -4 6
2 n - 1 -33 -13 -9 11
n + 5 -11 -1 1 11
\(B=\dfrac{2n-1}{n+5}\) 3 13 -9

1

Vậy.......

20 tháng 7 2017

Bài 6 cậu chép đúng đề bài chứ??

8 tháng 11 2018

ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm

8 tháng 11 2018

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(\dfrac{bz-cy}{a}=\dfrac{b.ck-c.bk}{a}=\dfrac{0}{a}=0\)(1)

\(\dfrac{cx-az}{b}=\dfrac{c.ak-a.ck}{b}=\dfrac{0}{b}=0\)(2)

\(\dfrac{ay-bz}{c}=\dfrac{a.bk-b.ak}{c}=\dfrac{0}{c}=0\)(3)

từ (1),(2) và(3) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\left(đpcm\right)\)