K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Giả sử \(S_n\) là số nguyên

ta có: \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)

\(S_n=\frac{1^2}{1}-\frac{1}{1}+\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S_n=0+1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{n^2}\)

\(S_n=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{n^2}\right)\) ( 1+1+...+1 có ( n-2) :1+1 = n -1 số 1)

để \(S_n\in z\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\in z\)(1)

mà \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)

                                                        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

                                                         \(=1-\frac{1}{n}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)(*)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;...;\frac{1}{n^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\) (**)

Từ (*);(**) \(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1\)

               \(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) không phải là số nguyên

Từ (1) => \(S_n\) không phải là số nguyên ( điều phải chứng minh)

17 tháng 3 2020

haha quá chuẩn

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

16 tháng 7 2017

Ta có:

\(\frac{1}{2^2}< \frac{1}{1.2},\frac{1}{3^2}< \frac{1}{2.3},...,\frac{1}{45^2}< \frac{1}{44.45}.\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}.\)

\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1.\)

Lại có A>0

=>0<A<1

=>A không là số nguyên