Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$
$\Leftrightarrow m^2+10m-7>0(*)$
Áp dụng định lý Viet:
$x_1+x_2=\frac{m+1}{2}$
$x_1x_2=\frac{m-1}{2}$
Khi đó:
$x_1-x_2=x_1x_2$
$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)
Vậy......
Pt có 2 nghiệm khi: \(\Delta=25-8\left(m+1\right)\ge0\Rightarrow m\le\dfrac{17}{8}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\x_1x_2=\dfrac{m+1}{2}\end{matrix}\right.\)
Kết hợp Viet và điều kiện đề bài: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{2}\\2x_1+3x_2=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{7}{2}\\x_1=-1\end{matrix}\right.\)
Thế vào \(x_1x_2=\dfrac{m+1}{2}\Rightarrow\dfrac{m+1}{2}=-\dfrac{7}{2}\)
\(\Rightarrow m=-8\)
\(x^2-2mx-3=0\left(1\right)\)
\(a=1;b=-2m;c=-3\)
Ta có a và c trái dấu nên ac<0 \(\Rightarrow\Delta>0\)
Do đó phuong trình (1) luôn có 2 nghiệm phân biệt với mọi m.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1x_2=\dfrac{c}{a}=\dfrac{-3}{1}=-3\end{matrix}\right.\)
Ta có: \(\left(x_1-2x_2\right)^2+x_2-2mx_1=20\)
\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-2mx_1=20\)
\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-\left(x_1+x_2\right)x_1=20\)
\(\Rightarrow-5x_1x_2+4x_2^2+x_2=20\)
\(\Rightarrow-5.\left(-3\right)+4x_2^2+x_2=20\)
\(\Leftrightarrow4x_2^2+x_2-5=0\)
Giải phương trình trên ta được: \(\left[{}\begin{matrix}x_2=1\\x_2=-\dfrac{5}{4}\end{matrix}\right.\)
Với x2=1 là nghiệm của phương trình (1). Ta có:
\(1^2-2m.1-3=0\Rightarrow m=-1\)
Với x2=-5/4 là nghiệm của phương trình (1). Ta có:
\(\left(-\dfrac{5}{4}\right)^2-2m.\left(-\dfrac{5}{4}\right)-3=0\Rightarrow m=\dfrac{23}{40}\)
Vậy m=-1 hay m=23/40
a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)
Để phương trình có nghiệm thì -4m+33>=0
=>-4m>=-33
hay m<=33/4
Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=m-2\)
=>m-2=50/9
hay m=68/9
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow5^2-2\left(m-2\right)=6\)
=>25-2(m-2)=6
=>2(m-2)=19
=>m-2=19/2
hay m=23/2
d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)
\(\Leftrightarrow25-4\left(m-2\right)=196\)
=>4(m-2)=-171
=>m-1=-171/4
hay m=-163/4