Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1)`
$a\big)\Delta=7^2-5.4.1=29>0\to$ PT có 2 nghiệm pb
$b\big)$
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{5}\\x_1x_2=\dfrac{1}{5}\end{matrix}\right.\)
\(A=\left(x_1-\dfrac{7}{5}\right)x_1+\dfrac{1}{25x_2^2}+x_2^2\\ \Rightarrow A=\left(x_1-x_1-x_2\right)x_1+\left(\dfrac{1}{5}\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\\ \Rightarrow A=-x_1x_2+\left(x_1x_2\right)^2\cdot\dfrac{1}{x_2^2}+x_2^2\)
\(\Rightarrow A=-x_1x_2+x_1^2+x_2^2\\ \Rightarrow A=\left(x_1+x_2\right)^2-3x_1x_2\\ \Rightarrow A=\left(\dfrac{7}{5}\right)^2-3\cdot\dfrac{1}{5}=\dfrac{34}{25}\)
\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)
\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)
\(\Leftrightarrow m^2-m-1=1\)
\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
a, b bạn tự giải
c. \(\Delta=m^2+4>0;\forall m\Rightarrow\) pt luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-1\end{matrix}\right.\)
Ồ, đề câu d bạn ghi sai, 2 mẫu số phải có 1 cái là \(x_1\)
\(\Delta=\left(2m+3\right)^2-4m=4m^2+12m+9-4m=4m^2+8m+9\)
\(=4\left(m^2+2m+1-1\right)+9=4\left(m+1\right)^2+5\ge5>0\forall m\)
Vậy pt luôn có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1+x_2=2m+3\\x_1x_2=m\end{matrix}\right.\)Ta có : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(\left(2m+3\right)^2-2m=4m^2+12m+9-2m=4m^2+10m+9\)
\(=4m^2+\dfrac{2.2m.10}{4}+\dfrac{100}{16}-\dfrac{100}{16}+9\)
\(=\left(2m+\dfrac{10}{4}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall m\)
Dấu ''='' xảy ra khi x = -5/4
a.\(\Delta=\left(-4\right)^2-4.\left(1-2m\right)\)
\(=16-4+8m=12+8m\)
Để pt có 2 nghiệm thì \(12+8m>0\)
\(\Leftrightarrow m>-\dfrac{12}{8}\)
b. Theo hệ thức vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=1-2m\end{matrix}\right.\)
\(x_1^2+x^2_2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow4^2-2\left(1-2m\right)=6\)
\(\Leftrightarrow16-2+4m-6=0\)
\(\Leftrightarrow4m=-8\)
\(\Leftrightarrow m=-2\)
a, \(\Delta'=\left(-2\right)^2-\left(1-2m\right)=4-1+2m=2m-3\)
Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow2m-3\ge0\Leftrightarrow m\ge\dfrac{3}{2}\)
b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1-2m\end{matrix}\right.\)
\(x_1^2+x_2^2=6\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\\ \Leftrightarrow4^2-2\left(1-2m\right)=6\\ \Leftrightarrow16-2+4m-6=0\\ \Leftrightarrow4m-8=0\\ \Leftrightarrow m=2\left(tm\right)\)