Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Bạn tự giải
b. Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow m+1< 0\Rightarrow m< -1\)
c. Đề bài có vẻ ko chính xác, sửa lại ngoặc sau thành \(x_2\left(1-2x_1\right)...\)
\(\Delta'=\left(m+2\right)^2-4\left(m+1\right)=m^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Pt đã cho luôn luôn có nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1x_2=m+1\end{matrix}\right.\)
\(x_1\left(1-2x_2\right)+x_2\left(1-2x_1\right)=m^2\)
\(\Leftrightarrow x_1+x_2-4x_1x_2=m^2\)
\(\Leftrightarrow2\left(m+2\right)-4\left(m+1\right)=m^2\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
1, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-6\end{matrix}\right.\)
\(A=\left(x_1-2x_2\right)\left(2x_1-x_2\right)\\ =2x_1^2-4x_1x_2-x_1x_2+2x_1^2\\ =2\left(x_1^2+x_2^2\right)-5x_1x_2\\ =2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\\ =2\left(-5\right)^2-4.\left(-6\right)-5.\left(-6\right)\\ =104\)
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-3\end{matrix}\right.\)
\(B=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x_2^2\right)\\ =\left(-3\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\left(-3\right)\left[5^2-2\left(-3\right)\right]\\ =-93\)
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1
Để pt 1 có 2 nghiệm phân biệt =>\(\Delta\)>0
<=> (2m-1(2 - 4(m2-3m-4( >0
<=> 4m2 - 4m + 1 - 4m2+12m+16 > 0
<=>8m +17>0
<=> m>-17/8
=> theo hệ thức Vi ét ta có
x1+x2=-2m+1 *
x1.x2=m2-3m-4 *
Theo bài ra ta có pt
|x1−x2|−2=0
<=> |x1−x2|=2
<=> (x1-x2(2=22
<=> x12 - 2x1.x2 + x22 = 4
<=> (x1 + x2 > 2- 4 x1x2 = 4 <**>
Thay *,* vào <**> ta được :
(-<2m-1>>2 - 4<m2-3m-4> = 4
<=> 4m2-4m+1 - 4m2+12m+16=4
<=> 8m + 17= 4
<=> 8m = 13
<=> m= 13/8 < t/m >
Vậy m = 13/8 là giá trị cần tìm
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
x2-2(m+2)x+m+1=0 (1)
a/ Xét phương trình (1) có \(\Delta\)=4(m+2)2 - 4.1.(m+1)
= 4m2+12m+12
= (2m+3)2 + 3 >0 với mọi m
Do đó phương trình có 2 nghiệm phân biệt với mọi m
Áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m+1\end{matrix}\right.\)
Ta có: x1,x2 trái dấu \(\Leftrightarrow\) x1.x2<0 \(\Leftrightarrow\) m+1<0 \(\Leftrightarrow\) m<-1
Vậy để phương trình có 2 nghiệm trái dấu thì m<-1
b/ Theo đề bài ta có:
x1(1-2x2) +x2(1-2x1)=m2
\(\Rightarrow\) x1-2x1x2+x2-2x1x2=m2
\(\Rightarrow\)(x1+x2)-4x1x2=m2
\(\Leftrightarrow\)2m+4-4(m+1)=m2
\(\Leftrightarrow\)-m2-2m=0
\(\Leftrightarrow-m\left(m+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
Vậy để x1(1-2x2)+x2(1-2x1)=m2 thì m=0 hoặc m=-2