Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=5^2-4\left(m-2\right)=25-4m+8=33-4m\)
Để pt có 2 nghiệm thì \(\Delta\ge0\Leftrightarrow33-4m\ge0\Leftrightarrow m\le\dfrac{33}{4}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\\ \Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=2\\ \Leftrightarrow x_1+x_2-2=2\left(x_1x_2-x_2-x_1+1\right)\\ \Leftrightarrow-5-2=2x_1x_2-2\left(x_1+x_2\right)+2\\ \Leftrightarrow2\left(m-2\right)-2.\left(-5\right)+2+7=0\\ \Leftrightarrow2m-4+10+2+7=0\\ \Leftrightarrow2m+15=0\\ \Leftrightarrow m=-\dfrac{15}{2}\left(tm\right)\)
\(x^2+5x+m-2\left(1\right)\)
PT (1) là PT bậc 2 có: \(\Delta=5^2-4.\left(m-2\right)=33-4m\)
Để PT có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow33-4m>0\Leftrightarrow m< \dfrac{33}{4}\)
Theo định lý Viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{5}{1}=-5\\x_1.x_2=\dfrac{c}{a}=\dfrac{m-2}{1}=m-2\end{matrix}\right.\)
Ta có: \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\Leftrightarrow\dfrac{x_2-1+x_1-1}{\left(x_1-1\right)\left(x_2-1\right)}=2\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)-2}{x_1.x_2-\left(x_1+x_2\right)+1}=2\Leftrightarrow\dfrac{-5-2}{m-2-\left(-5\right)+1}=2\)
\(\Leftrightarrow\dfrac{-7}{m+4}=2\Leftrightarrow m+4=-\dfrac{7}{2}\Leftrightarrow m=-\dfrac{15}{2}\)
Lời giải:
Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$
$\Leftrightarrow m\leq \frac{33}{4}$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-5$
$x_1x_2=m-2$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$
$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$
$\Leftrightarrow m-2+5+1=\frac{-7}{2}$
$\Leftrightarrow m=\frac{-15}{2}$ (tm)
Lời giải:
Để pt có 2 nghiệm thì: $\Delta=25-4(m-2)\geq 0$
$\Leftrightarrow m\leq \frac{33}{4}$
Áp dụng hệ thức Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:
$x_1+x_2=-5$
$x_1x_2=m-2$
Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=2$
$\Leftrightarrow \frac{x_1+x_2-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow \frac{-5-2}{(x_1-1)(x_2-1)}=2$
$\Leftrightarrow (x_1-1)(x_2-1)=\frac{-7}{2}$
$\Leftrightarrow x_1x_2-(x_1+x_2)+1=\frac{-7}{2}$
$\Leftrightarrow m-2+5+1=\frac{-7}{2}$
$\Leftrightarrow m=\frac{-15}{2}$ (tm)
Phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)
Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\) (1)
Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{x^2}=1\Leftrightarrow\dfrac{x^2_1+x^2_2}{x^2_1x^2_2}=1\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=1\) (2)
Từ (1) và (2) \(\Rightarrow4-2m=m^2\Leftrightarrow m^2+2m-4=0\)
\(\Delta'=1+4=5\Rightarrow\sqrt{\Delta'}=\sqrt{5}\Rightarrow\left[{}\begin{matrix}m=-1+\sqrt{5}\left(\text{loại}\right)\\m=-1-\sqrt{5}\left(\text{nhận}\right)\end{matrix}\right.\)
Vậy \(m=-1-\sqrt{5}\)
Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)
=>Pt luôn có hai nghiệm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)
Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)
\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)
Vậy m=1
Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)
Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)
\(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)
\(\Leftrightarrow...\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-4\right)\\x_1x_2=-m^2+4\end{matrix}\right.\)
\(\dfrac{x_1+x_2}{x_1x_2}+\dfrac{4}{x_1x_2}=1\)
Thay vào ta được : \(\dfrac{2\left(m-4\right)+4}{-m^2+4}=1\Leftrightarrow\dfrac{2m-4}{\left(2-m\right)\left(m+2\right)}=1\Leftrightarrow\dfrac{-2}{m+2}=1\Rightarrow-2=m+2\Leftrightarrow m=-4\)
Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m+1\right)\)
\(=\left(-2m+2\right)^2-4\left(m+1\right)\)
\(=4m^2-8m+4-4m-4\)
\(=4m^2-12m\)
Để phương trình có nghiệm thì \(\text{Δ}\ge0\)
\(\Leftrightarrow4m^2-12m\ge0\)
\(\Leftrightarrow4m\left(m-3\right)\ge0\)
\(\Leftrightarrow m\left(m-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\)
Khi \(\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\), Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=m+1\end{matrix}\right.\)
Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1\cdot x_2}=4\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow\dfrac{\left(2m-2\right)^2-2\cdot\left(m+1\right)}{m+1}=4\)
\(\Leftrightarrow4m^2-8m+4-2m-2=4\left(m+1\right)\)
\(\Leftrightarrow4m^2-10m+2-4m-4=0\)
\(\Leftrightarrow4m^2-14m-2=0\)
Đến đây bạn tự làm nhé, chỉ cần tìm m và đối chiều với điều kiện thôi
Pt có 2 nghiệm
\(\to \Delta=[-2(m-1)]^2-4.1.(m+1)=4m^2-8m+4-4m-4=4m^2-12m\ge 0\)
\(\leftrightarrow m^2-3m\ge 0\)
\(\leftrightarrow m(m-3)\ge 0\)
\(\leftrightarrow \begin{cases}m\ge 0\\m-3\ge 0\end{cases}\quad or\quad \begin{cases}m\le 0\\m-3\le 0\end{cases}\)
\(\leftrightarrow m\ge 3\quad or\quad m\le 0\)
Theo Viét
\(\begin{cases}x_1+x_2=2(m-1)\\x_1x_2=m+1\end{cases}\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
\(\leftrightarrow \dfrac{x_1^2+x_2^2}{x_1x_2}=4\)
\(\leftrightarrow \dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)
\(\leftrightarrow \dfrac{[2(m-1)]^2-2.(m+1)}{m+1}=4\)
\(\leftrightarrow 4m^2-8m+4-2m-2=4(m+1)\)
\(\leftrightarrow 4m^2-10m+2-4m-4=0\)
\(\leftrightarrow 4m^2-14m-2=0\)
\(\leftrightarrow 2m^2-7m-1=0 (*)\)
\(\Delta_{*}=(-7)^2-4.2.(-1)=49+8=57>0\)
\(\to\) Pt (*) có 2 nghiệm phân biệt
\(m_1=\dfrac{7+\sqrt{57}}{2}(TM)\)
\(m_2=\dfrac{7-\sqrt{57}}{2}(TM)\)
Vậy \(m=\dfrac{7\pm \sqrt{57}}{2}\) thỏa mãn hệ thức
ĐK:`x_1,x_2 ne 0=>x_1.x_2 ne 0`
`=>-2m-1 ne 0=>m ne -1/2`
Ta có:`a=1,b=2m,c=-2m-1`
`=>a+b+c=1+2m-2m-1=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-2m-1\end{array} \right.\)
PT có 2 nghiệm pn
`=>-2m-1 ne 1`
`=>-2m ne 2`
`=>m ne -1`
Nếu `x_1=1,x_2=-2m-1`
`pt<=>6=1+1/(-2m-1)`
`<=>5=1/(-2m-1)`
`<=>2m+1=-1/5`
`<=>2m=-6/5`
`<=>m=-3/5(tm)`
Nếu `x_2=1,x_1=-2m-1`
`pt<=>6/(-2m-1)=-2m-1+1=-2m`
`<=>6/(2m+1)=2m`
`<=>3/(2m+1)=m`
`<=>2m^2+m-3=0`
`a+b+c=0`
`=>m_1=1(tm),m_2=-c/a=-3/2(tm)`
Vậy `m in {-3/5,1,-3/2}` thì ....
Có\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)
=> pt luôn có hai nghiệm pb
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)
Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)
\(\Rightarrow P\ge0\)
Dấu = xảy ra khi m=-1
\(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(m-2\right)\left(m+1\right)\)
\(=4m^2-8m+4-4\left(m^2+m-2m-2\right)\)
\(=4m^2-8m+4-4m^2+4m+8\)
\(=-4m+12\)
Để pt có 2 nghiệm thì \(\Delta>0\)
\(\Leftrightarrow-4m+12>0\)
\(\Leftrightarrow m< 3\)
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\x_1x_2=\dfrac{m-2}{m+1}\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{2m-2}{m+1}:\dfrac{m-2}{m+1}=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{2m-2}{m-2}=\dfrac{7}{4}\)
\(\Leftrightarrow8m-8=7m-14\)
\(\Leftrightarrow m=-6\left(tm\right)\)
Vậy \(m=-6\)
Khiếp, nhanh thế, nhường iem đi cj :v